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Abstract. Large Language Models (LLMs) have been a dominating trend in Artificial Intelligence (AI) the past few years. At
the same time, neuro-symbolic systems have also received increasing interest due to their advantages over purely statistical
generative models. However, it is currently difficult to compare the different ways in which the training, fine-tuning and usage
of the growing variety of such approaches is carried out. In this work, we use and extend the modular design patterns and
Boxology language of van Bekkum et al for this purpose. These patterns provide a general language to describe, compare and
understand the different architectures and methods used. The primary goal of this work is to support better understanding of
LLM-based models that are used in combination with knowledge based systems, making them neuro-symbolic systems. In order
to demonstrate the usefulness of this approach, we explore LLM-based neuro-symbolic architectures and approaches as well as
use cases for these design patterns.
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1. Introduction

In recent years, Artificial Intelligence (AI) has taken a leap and reached a level of capacity and productivity
unprecedented in previous decades. In the form of so-called generative Al, and Large Language Models (LLMs)
in particular, complex statistical approaches have demonstrated natural language processing capabilities at level
very close to human capabilities. Prominently, the release of OpenAI’s ChatGPT system! has changed world of
text generation forever. Currently, a wealth of many different LLM models are being developed and published, both
open-source and proprietary [7, 14, 28, 40]. Despite of the many impressive achievements and capabilities of LLMs,
however, major open challenges of purely statistical LLMs remain, such as hallucination [23], explainability [84]
and trustworthiness [22, 33].

In response to these challenges, a variety of novel neuro-symbolic approaches to LLM-based Al systems have
emerged lately [11, 67]. Due to the quantity and diversity of emerging generative techniques, however, it becomes
more and more challenging to keep track of the ever-growing variety of models with different architectures and
capabilities. This challenge becomes even more complex with the emerging trend to combine LLMs with symbolic
Al techniques. One of the solutions to tackle this issue is to apply a high-level conceptual framework to discuss,
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compare, configure and combine different models by using a Boxology. The Boxology started in the field of neuro-
symbolic systems, by [60] in 2019. This work is extended in 2021 by [59] by providing a taxonomically organised
vocabulary to describe both processes and data structures used in hybrid systems.

In this paper, which is an extension of our previous paper [12], we propose to use and extend the Boxology to gain
insights in a variety of LLMs, specifically on LLMs used in a neuro-symbolic approach. To this end, this paper pro-
vides two contributions: Firstly, we propose novel design patterns as extension of the current Boxology to promote
transparency and trustworthiness in system design, by providing interpretable, high-level component descriptions of
LLM-based neuro-symbolic systems. Our modular approach supports new architectures and engineering approaches
to systems based on LLMs. Secondly, we test validity and usefulness of the Boxology and our extensions in this
field on example architectures and applications, such as ChatGPT, KnowGL, GENOME and Logic-LM.

The rest of the paper is organized as followed. In the next section, we give a more detailed overview of the related
work regarding LLMs and LLM-based neuro-symbolic systems and Boxology. In the third section, we propose
to extend the Boxology by three novel basic patterns in order to be able to handle LLMs, and we explain several
compositional design patterns in this field. In section 4, we dive into specific applications and tasks in which LLMs,
specifically in neuro-symbolic systems, are used. We conclude with summarizing our key findings and outlining
future work.

2. Related Work
2.1. LLMs and LLM-based Neuro-Symbolic Systems

The key technology most current LLMs use is the so-called transformer architecture. The original transformer
architecture published by [61] proposed to use two interacting models, an encoder and a decoder. These can be
trained end-to-end (such as flan-T5 [10]). Alternatively architectures have been proposed using either only the
encoder-only (BERT [13]) or decoder-only (GPT [5], BLOOMZ [42], PaLLM [9]) models. As only few LLMs based
on other architectures have been proposed [2, 48], in this paper we focus on transformer-based LLMs and consider
encoder-only, decoder-only and encoder-decoder systems to be possible types of LLMs.

The difference between encoder-only and decoder-only systems is motivated by optimizing the architecture for
different scenarios. Encoder-only transformers, such as BERT [13], are specialised in contextual encoding, often
named base models. They use the context to encode input sentences and represent it as a machine interpretable rep-
resentation, such as a vector representation. Decoder-only systems are complementary to the encoder-only paradigm,
but structurally different [39]. A decoder-only system decodes the input data directly, without being transformed into
a higher, more abstract representation, to the desired representation (text, images or otherwise). Examples of this are
generative models from the GPT family [5]. Decoder-only architectures can be further divided into causal decoder
architectures and prefix decoder architectures. Causal decoder architectures, such as GPT [5, 50] and BLOOMZ
[42], use only unidirectional attention to the input sequence by using a specific mask. Prefix decoder architectures,
such as PaLLM [9], use the bidirectional attention for tokens in the prefix while maintaining unidirectional attention
for generating subsequent tokens.

Despite many impressive capabilities and results in challenging benchmarks, purely statistical LLM-based sys-
tems continue to exhibit unwanted side effects, such as hallucinations and lack of explainability. Combinations of
symbolic Al and machine learning are already extensively used in the area of Natural Language Processing [46].
While originally, the main application area was natural language understanding (e.g. text classification, sequence
labeling, and question answering), newer hybrid NLP applications focus on natural language generation and natural
language reasoning (e.g., language modeling, dialogue systems, text summarization, machine translation, question
generation). One paper that provides an overview of different approaches in the field of combining LLMs and sym-
bolic systems is [45]. In this overview, a distinction is made between KG-enhanced LLMs, LLM-augmented KGs
and synergized LLMs + KGs. For KG-enhanced LLMs, two primary approaches have been explored: incorpora-
tion during the pre-training stage to facilitate knowledge acquisition, and utilization during the inference stage to
improve access to domain-specific information. Additionally, KGs have been employed post-hoc to augment the
interpretability of LLMs, elucidating both factual content and reasoning processes. In order to augment KGs, LLMs
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have been employed as text encoders to enrich KG representations and extract relations and entities from original
corpora. Recent studies have focused on designing KG prompts that effectively convert structural KGs into LLM-
comprehensible formats, enabling direct application of LLMs to KG-related tasks such as completion and reasoning.
Moreover, it has been proposed by the authors to consider effects and concepts of syngerized LLMs + KGs with
respect to four layers: 1) Data, 2) Synergized Model, 3) Technique, and 4) Application. We will loosely use the
categorisation of this paper in our exploration of different LLM-based neuro-symbolic systems.

2.2. Boxology

We will base our paper on the previous work of van Bekkum and colleagues [59], in which a taxonomically or-
ganised vocabulary is provided to describe both processes and data structures used in hybrid Al systems. Elementary
patterns of this approach are displayed in Fig. 1.

The highest level of this taxonomy contains instances, models, processes and actors, which may be described as
follows:

Instances: The two main classes of instances are data and symbols. Symbols are defined as to have a designation to
an object, class or a relation in the world, which can be either atomic or complex, and when a new symbol is
created from another symbol and a system of operations, it should have a designation. Examples of symbols
are labels (short descriptions), relations (connections between data items, such as triples) and traces (records
of data and events). Data is defined as not symbolic. Examples are numbers, texts, tensors or streams.

Models: Models are descriptions of entities and their relationships, which can be statistical or semantic. Statistical
models represent dependencies between statistical variables, such as LLMs or Bayesian Networks. Semantic
models specify concepts, attributes and relationships to represent the implicit meaning of symbols, such as
ontologies, taxonomies, knowledge graphs or rule bases.

Processes: Processes are operations instances and models. Three types of processes are defined: generation, trans-
formation and inference. Generation can be done using, for example, the training of a model or by knowledge
engineering. Transformation is the transformation of data, for example from knowledge graph to vector space.
Inference can be inductive or deductive, in which induction generalises instances and deduction reaches con-
clusions on specific instances, such as with classification.

Actors: Actors can be humans, (software) agents or robots (physically embedded agents). [? ] extended the original
paper with a definition of teams of actors in the Boxology.

Besides the vocabulary, the visual language is defined in [59], as an extension of [60]. The visual language
consists of rectangular boxes (instances), hexagonal boxes (models), ovals (processes) and triangles (actors) and
untyped arrows between them. Within the boxes the concept will be noted by each level in the vocabulary using
colon-separation from most generic to most-specific, for example a neural network will be model:stat:NN.

[59] present elementary patterns, which can then be combined into more complex patterns. Patterns la and 2a
from Figure 1, for example, can be combined into a pattern which is named 3a in the paper (depicted in Figure 2).
Whereas 1a describes the pattern of training a model based on data (data generates a model), 2a describes the usage
of the model in deducing a symbol (data and model deduce a symbol), such as a prediction. The combination in
3a describes a basic structure for a (statistical) Machine Learning (ML) model depicting the training (creating the
model) and testing or application phase (applying the model on new data).

In the past years, the Boxology has been used and extended in different ways. Three of the papers are the formali-
sation of the notions from the Boxology and implementation in the heterogeneous tool set (Hets) [41], the extension
of the Boxology for (teams of) actors [38] and the systematic study of nearly 500 papers published in the past decade
in the area of Semantic Web Machine Learning [4].

We also acknowledge the ontological visual framework utilizing semantically-enhanced symbols to represent Al
system components and architectures [15]. This EASY-AI framework aims to provide a standardized symbolic lan-
guage for conveying the structure, purpose, and characteristics of Al systems. The approach presents the logical
formalisms underpinning this visual framework, with the objective of enhancing the comprehensibility and under-
standability of Al system behaviors. Recently, this framework is also provided with an initial implementation named
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SNOOP-AI [16]. This framework and implementation could be used in the implementation of the design patterns,
as it can provide a formal conceptual foundation for the design patterns that allows formal reasoning over (compo-
sitions of) its elements. To the best of our knowledge, specific LLM-based use cases have not been tried using the
formalisation and implementation yet.
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Fig. 1. All elementary design patterns, including proposed additions le, 1f and 2e

3. Design Patterns for LLM-based Neuro-Symbolic Systems

In this section, we propose new elementary patterns necessary to represent LLMs and LLM-based neuro-symbolic
systems. We continue with an explanation of transformer models and their compositional patterns, and we finish the
section with the compositional design patterns for LLM-based neuro-symbolic systems.

3.1. Introducing Novel Elementary Patterns

In order to allow for a coherent description of the Large Language Model paradigm, we propose to extend the
elementary patterns of [59] that describe the generic pattern for instances, models, processes and actors (Figure 1
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Fig. 2. Compositional design patterns, including proposed addition 3c made by combining elementary pattern la and 2e.

la-1d and 2a-d). Please note that while patterns le and 1f are required for certain aspects of the LLM paradigm,
their usage is not limited to this. Both patterns may also represent data generation and labelling by humans and may
thus be employed to work with any statistical approach.

In particular, when describing classical machine learning systems, mostly pattern 2a is used, where the output
is a symbol, such as a classification or a label. However, the key difference with LLMs, specifically the generative
decoder models, is that the output is not a symbol, but data; this can be an image, video or text, depending on the
model. Additionally, actors play an important role in LLMs, by creating prompts or label data. To this end, we
here propose three new elementary patterns: pattern le, in which an actor can generate data, pattern 1f, in which
an actor labels data, and 2e, in which a model can deduce data from data. Please note, however, that the patterns
proposed in this section are transferable to other data types, for example to vision transformers, which follow a
similar architecture paradigm as transformers but operate on image data.

3.2. Transformer Models

Transformers consist of an encoder and a decoder component [61]. From this basic premise, new encoder-only
and decoder-only systems have been developed [5, 13]. Figure 3 shows the architecture of transformer models
in Boxology. Firstly, in Figure 3A, the full transformers architecture with both encoder and decoder modules is
represented. In this case we chose to accentuate the encoder and decoder as separate modules. This pattern includes
the new addition compositional pattern 3c, made up of parts 1a and 2e. The decoder is a specification of a generative
model introduced in 3c, whereas the encoder is a specification of a model that can be trained with data (1a).

Secondly, the use of an encoder model is shown in Figure 3B. An encoder is trained using data, Boxology pattern
la. It is often connected to other systems, such as a classification system, pattern 3a, to be useful for tasks such
as sentiment analysis. An example of this is BERT [13]. This specific pattern with classification is not considered
generative, as generative models output data and not a symbol.

Thirdly, decoder-only systems are represented in Boxology as shown in Figure 3C, which is the introduced for
generative models 3c. Both causal decoder architectures and prefix decoder architectures follow the same Boxology
pattern.

3.2.1. Prompts and Instructions

One of the main differences between newer, generative LLMs and earlier BERT or other transformer models is
that the model is fine-tuned on instructions [39]. Multi-task fine-tuning or instruction tuning, is currently often done
using a collection of datasets phrased as instructions, to improve model performance and generalisation to unseen
tasks [10, 79]. The original model is often referred to as foundation model [3], whereas the fine-tuned model is an
adjusted model. Instruction tuning also follows pattern 1a, but this data is different as it also contains instructions.

Besides instruction learning, LLMs can also be tweaked by in-context learning. Here examples are used as part of
the prompt to give context for the answers to the instructions. In this case the model weights are not changed. This
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Fig. 3. Three uses of transformers. A shows the traditional encoder-decoder architecture. B shows an encoder-only model applied to a
classification task. C shows a decoder-only architecture.

optimizes the performance of models on different tasks [34], but does not need as much training data as training a
model from scratch. These prompts can include a few (training) examples of the input and output (few-shot) or no
examples (zero-shot). These few-shot examples do not train the foundational or instruction model, and therefore we
model them as input data that is used to deduce data (text), which is pattern 2e. Assistants, agents or GPTs could,
however, be seen as a new model, especially if they perform other tasks, such as Retrieval Augmented Generation
(RAG).

3.3. LLM-based Neuro-Symbolic Design Patterns
Even though generative LLMs generate text in convincing quality, the accuracy of their answers is lacking in

many documented cases [69]. They lack in regard to facts and reasons, because they fail to understand concepts of
truth, causality, time and space, as well as understanding of other physical and social relationships. This is one of
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the reasons to create LLM-based neuro-symbolic systems. These systems often either use an LLM followed by a
semantic model, or a semantic model followed by an LLM, or a combination of two models in parallel of which the
output is fused. In this section, we propose compositional design patterns for these different types of systems. We
loosely follow the categorisation of [45]. We divide the section into training and application phase, as the patterns
for these phases are distinct. As we only consider LLMs in these patterns, we use LLM as a type of model, and
do not specify for example encoder and decoder types, as encoder-decoder, encoder-only or decoder-only models
could be used in the compositional patterns.

3.4. LLM-based Neuro-Symbolic Design Patterns in Training

Generative Neuro-Symbolic Systems can use semantic models in the training of an LLM or use an LLM to create
a semantic model, or can be used in synergy to create a model. In the following subsections, we will describe the
different patterns in more detail.

3.4.1. KG-enhanced LLMs

The design pattern in Figure 4 shows how a semantic model (KG) can be used to transform symbols (pattern 2d)
into a different type of symbol, to data (pattern 1d) that is used to train a generative model (1a). Pattern 2d is slightly
adjusted, as there symbol is used as output and a general transform (not necessarily embed) is used. The constraints
can represent aspects of the KG, such as semantic distance (number of hops between concepts) [53], difference in
loss values between tokens and KG entities [80] or sentiment (SKEP [58]).

The data that influences the training process can, for example, act as a mask to filter the training data [30, 51, 53,
72]. In this way, the input text would be verified with respect to known entities and, therefore, increase the reliability
of the training and input.

3.4.2. LLM-augmented KGs

Figure 5 shows the design pattern for the training of LLM-augmented KGs. Similar to the KG-enhanced LLMs
in training, data (or symbols such as triples transformed to data) is transformed to another type of data (2d - with
data as input), such as embeddings, and then used to train a (KG in this case) model (1a). The first step of using an
LLM to transform the data is often used because KGs might be incomplete and textual information is not integrated
in the embedding itself. For example, [43] generates representations on different levels such as sentence and doc-
ument using LLMs and [21] creates multi-modal embeddings. Tasks such as LLM-augmented KG completion and
construction, including Named Entity Recognition, Coreference Resolution and Relation Extraction could follow
this pattern, depending on the specific implementation and whether the LLM is used in the training phase or only
the application phase. For instance, KG-BERT, MLT-KGC and PKGC use LLMs for KG completion [27, 37, 75].
They use the LLM output to predict the relation between new entities and existing ones. [73] uses LLMs to aid in
Named Entity Recognition, [6, 25] for Coreference Resolution and [47, 54] for Relation Extraction.

3.4.3. Synergized LLMs and KGs

One of the ways in which LLMs and KGs are synergized in training is using an LLM for joint text and KG
embedding or representation. Figure 6 shows the Boxology representation of these type of systems. The symbolic
triples are transformed to text (data; 1d), which is then combined with other text to incorporate both the graph
structure and the textual information into the embedding simultaneously and trained to create a model (1a).

For example, kKNN-KGE sees the entities as special tokens and incorporates them in the sentences as input for
the LLM [63]. LMKE has a similar system structure but applies a different learning method to improve the learnt
embeddings [65]. LambdaKG improves the representation of the graph structure by including neighbouring entities
in the input sentence [71]. KEPLER, JointGT and DRAGON use a unified model for the knowledge embedding
and pre-trained language representation [26, 64, 77]. They have pre-training tasks to come to a joint knowledge
embedding and language modeling optimization. ERNIE proposes a dual encoder system, consisting of a textual
encoder which is fused with the knowledge graph encoder [82]. BERT-MK has a similar dual encoder, but adds
additional information from neighbouring entities in the knowledge graph [19]. Coke-BERT further improves on
this idea by adding a module to filter out irrelevant neighbouring entities [55]. JAKET fuses the entity representation
in the middle layers of the LLM [78].
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transform

(12);

Fig. 6. Synergized LLMs and KGs in training
3.5. LLM-based Neuro-Symbolic Design Patterns in Application

Neuro-Symbolic systems often combine KGs and LLMs in the application phase. In this way, the system is more
robust to new situations. Many of the LLM-based neuro-symbolic systems follow one of the pre-defined patterns.
For example, if KG construction is only done using a pre-trained generative model, this is captured in pattern 2a
(with data infer a symbol - the KG - using a model). The LLM-augmented KG-to-text generation can be done using
the basic pattern 2d, in which a KG is inferred using a generative model, creating data (text).

3.5.1. KG-enhanced LLMs

The design pattern in Figure 7 shows how the knowledge of knowledge graphs (KG) can be included in the
inferencing of LLMs. The input data can be aligned with the knowledge or augmented by adding relevant facts for
the LLM to improve the output.

In contrast to the injection of KGs during training (see subsubsection 3.4.1), the pattern 2d and 1d are now input to
the infer process instead of the train process. This means that the knowledge is up to date at the time of application,
rather than at the time of training (which may happen a long time before).

This pattern transforms input data by aligning it with knowledge from the KG before they are fed into the deduc-
tion process with an LLM model. It could be done in a process of prompt engineering using the KG [31, 36, 62, 68]
or retrieval-augmented knowledge methods such as RAG [29]. One specific architecture is KagNet, which first
encodes the input KG and then augments it with textual representation [32].

3.5.2. LLM-Augmented KGs

The design pattern in Figure 8 shows how an LLM can used to deduce data from a KG. Similar to the KG-
enhanced LLMs for application, the difference between training and application for LLM-augmented KGs is that
the first pattern is input to infer process rather than the train process. One example is by using LLMs for KG
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Fig. 9. Synergized LLMs and KGs for reasoning

Embedding. Pretrain-KGE uses an LLM to encode the text of the parts of the triples, and uses that encoding as a
starting point for the KG encoding [83].

Moreover, in LLM-augmented KG question answering, LLMs are used to bridge the gap between natural lan-
guage questions and the retrieval of answers from KGs [20, 35]. Also LLMs can be used for generation of text
from a knowledge graph, where LL.Ms are employed to generate natural language that describes the facts from KGs
[17, 56, 66]. MHGRN uses the LLM representation of the text to guide the reasoning process in the KGs [18].

3.5.3. Synergized LLMs and KGs

LLMs and KGs can be combined to work in synergy, also in the application phase. Figure 9 shows how this can
be applied, specifically in the case of synergized reasoning. Examples of such methods are JointLK and GreaseLM.
They have an interaction between the tokens in the textual input and the entities in the graph in the layers of the
model [57, 81]. QA-GNN represents the LLM information as a special node in the KG for reasoning [76].

4. Use Cases

In this section, we describe and explore several papers that propose LLM-based neuro-symbolic system. The
selected papers are chosen, as they represent a diverse set of possibilities to use an LLM, at the start of the system,
in the middle and at the end, but also to act as a fluent language interface or a formal language interface. We also
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included ChatGPT, which is the most famous generative Al system, and although mainly data driven, includes a
symbolic component in the reward modelling part of the training phase.

4.1. ChatGPT

ChatGPT is an application of the foundational model GPT3 [5], and later GPT4 [70]. It is trained further to be of
aid in the setting of an assistant. The architecture of the training phases is represented in Figure 10. The foundational
model GPT3 is used as a basis for further training (1a). Instructions and answers are used to train what will become
ChatGPT. Then, based on new prompts the model generates a response (3c).

To further train ChatGPT to give the desired responses the reward model is added. The reward model is a separate
model, which can judge if a response is a good one, given the instructions. The reward model is trained by people
annotating the multiple answers to instructions. To train the reward model, the model trained on instructions is asked
to output multiple answers. These answers are then ranked by annotators to generate a training set for the reward
model (1f). The reward model is trained to compare answers of ChatGPT and return their score (3a). This is then
used in a loop with the ChatGPT to improve the instruction answering process. As one can view, we have adapted
Boxology patterns to be able to accept multiple inputs.

When applying ChatGPT in a pipeline, it suffices to show only pattern 3c, the block containing ChatGPT and le
to show the user writing the prompt.

g model-reward f generate train dataranked | )
: \ response (in’
‘ data:text }—( generate train Dde{\;gigoder ?:nmk?:g‘ H infer:deduce 3(7

data ( . ) : model
instructions generate:train ChatGPT
‘actor (generale createH data:prompt } inferdeduce

generate:label

Fig. 10. Training phase of ChatGPT

4.2. RAG

Retrieval-Augmented Generation (RAG) is a method which expands an LLM with external knowledge [29]. A
RAG system has two main components, a retriever and a generator. Figure 11 shows the Boxology representation of
a RAG system, clearly showing the retriever and the generator. Firstly, the retriever selects relevant documents based
on the posed question (2a), through classification or otherwise. Then, the question and the retrieved documents are
presented to an LLM in a prompt (2e). The LLM then generates an answer to the question based on the information
in the selected documents. The LLM can then also present the source of the information, which makes it more
trustworthy and reliable.

In KD-CoT, KSL and Think-on-graph facts are retrieved from a KG, together with the reasoning. Then an LLM
then generates a natural language answer to present to the user [17, 56, 66].
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Fig. 11. Use of Retrieval-Augmented Generation
4.3. KnowGL

Figure 12 shows KnowGL Parser [52], a NeSy system combining an LLM module and symbolic methods. The
KnowGL Parser can be used to automatically extract knowledge graphs from collections of documents. It is based
on BART-large, which has an encoder-decoder architecture. The encoder receives a sentence (1a) and the decoder
generates a list of ‘subject, relation, object’ (3c). These are then parsed (transformed) in preparation of the next step,
fact ranking (1d). Here a ranked list is created of distinct facts and their scores (2b). In the final step the generated
facts are linked to Wikidata. This is done using a mapping of labels to Wikidata IDs (2b). In the case that the
generative model has created a new entity, type or relation label that are not in Wikidata it returns ‘null’.

o) ; 5

T ey
‘ data }—)(generatetram )—héndel encoder

generate:engineer

i ( generate:engineer
tee-modelranking H---- oo onno el

fodelWikidaty |
linking i

Fig. 12. Boxology representation of KnowGL [52]

4.4. KnowBERT

While knowledge is mostly injected to statistical generative models either during the input or during the output
stage, also approaches to inject knowledge inside the model have been proposed. A prominent example is Know-
BERT, a modified variant of the transformer architecture BERT [49]. It stands out for its fusion of contextual and
graph representations, attention-enhanced entity spanned knowledge infusion, and flexibility in injecting multiple
Knowledge Graphs at various model levels. By integrating so-called Knowledge Attention and Recontextualization
(KAR) layers [1], graph entity embeddings are utilized that are processed through an attention mechanism to en-
hance entity span embeddings. This happens in later layers of the model to stabilize training but may potentially
also used to inject knowledge at earlier stages [11]. The Boxology pattern for KnowBERT is depicted in Figure 13.

4.5. Mathematical Conjecturing and LLMs

The system proposed by [24] assigns the generative task of discovery of mathematical conjectures to an LLM (3c¢),
while the results can be checked afterwards using a symbolic theorem prover or counter-example finder (2b). The
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actor ';\\‘generate:engineer }—) model:semantic

4

data 4>< generatetrain >—>< model:LLM >

h

Fig. 13. Boxology representation of KnowBERT [49]

system is prompted with a formal theory (e.g. a sort function), and has the LLM generate lemmas from the theory.
These generated lemmas are transformed from data to symbol and can then be used by the semantic model(s). The
pattern is depicted in Figure 14. The approach taken in [74] is also captured by this representation. The system
proposed uses an LLM component to produce Prolog code (3c) and a symbolic inference engine to produce answers
and reasoning traces by executing the aforementioned code (1d, 2b).

data

generate:train i

v

6ode\:generative> ,,,,,,,,,,,,,

3 v ; |
data W data { transform )—) symbol ‘{ infer:deduce )—) symbol

Fig. 14. Boxology representation of using LLMs for discovery of mathematical conjectures [24]

4.6. GENOME

Generative Neuro-Symbolic Visual Reasoning by Growing and Reusing Modules (GENOME) [8] focuses on the
task of generative software module learning, based on an LLM generating signatures (input/output) and reasoning
steps, then have an LLM create the software module based on those and evaluate the module on test cases.

The system consists of three stages: module initialization, module generation, and module execution. The rep-
resentation for this paper is depicted in Figure 15. First an LLM assesses a visual-language question and outputs
new module signatures and operation steps as a response to the query (3c), if current modules cannot provide an
adequate response. In the next step, the LLM creates a module (software code) based on the signature/test case (3c).
Finally the module is executed by passing it a visual query (2a).
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"""""" data R

generate:train

odel:generative}

-------------- data ST
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A

data

data 4{ infer:deduce >—> data

4.7. Logic-LM

Fig. 15. Boxology representation of GENOME [8]

data 4’( generate:train )—p@enerative}

Y
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. 16. Boxology representation of Logic-LM [44]
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Logic-LM [44] integrates LLMs with symbolic solvers to improve logical problem-solving. This paper is depicted
in Figure 16: the system utilizes LLMs to translate a problem stated in natural language problem into a symbolic
formulation (3¢). In the next step, a symbolic reasoner performs logical inference on the formulated problem (1d,
2b, 1d). Finally, an LLM interprets the results and outputs natural language (3c). The LLM thus functions as a fluent
language interface (both on input and output) to a symbolic reasoner component.

5. Conclusion and Future Work

LLMs are currently often used in many diverse applications. Combining data-driven approaches with knowledge-
based techniques is a promising development to this end. In this paper, we propose new design patterns for modular
LLM-based neuro-symbolic systems to be included into the design pattern approach for neuro-symbolic systems
as proposed by [59]. We show how the composition of elementary patterns can be used to describe LLMs, and we
explore several categories as well as specific approaches in use cases, such as ChatGPT, KnowGL, GENOME and
Logic-LM.

In future work, we expect to further extend this work towards adjacent domains, such as generative Al systems
in general or multi-modal generative Al systems. In addition we expect to further extend and deepen the Boxology
itself. For example, temporal or recurring/iterative aspects are not yet taken into account and cannot be visualised
well. Current investigation has also shown that concept naming and labelling and formalisation of the Boxology
needs revisiting. Then there is the do’s and don’ts: the extension has raised questions about which pattern combi-
nations are allowed and which are not. The importance of modelling datasets for LLMs or generative Al in general
may be taken into account in future specifications of particular subtypes of Instances and Models in the taxonomy.
Additionally, the use of graphical tools for software development is well-known from the Unified Modelling Lan-
guage (UML) and visual programming tools, such as LabView or Scratch. We are mostly concerned with graphical
representations of design patterns for system design and documentation, but the promise of templates, low-code or
no-code development is appealing for the future.
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