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Abstract. Combining neural and symbolic features in a single Neuro-Symbolic (NeSy) AI reasoning system has shown the
promise to bring the best of both worlds, yielding higher robustness and explainability. Yet, while NeSy reasoning has been
shown to be effective on various tasks, its strengths and weaknesses for understanding traffic situations have not been system-
atically explored. To bridge this gap, we consider the promises and the challenges of NeSy reasoning for posthoc prediction in
the traffic domain. We devise a taxonomy of predictive traffic tasks that is organized into three categories: safety, perception,
and diagnostic/complex inference. We consider these tasks from two perspectives: autonomous vehicles, where the goal is to
minimize navigation errors of vehicle participants in traffic, and traffic monitoring, where the goal is to understand situations and
their implications from the perspective of a third-person view. We investigate the role of NeSy reasoning for these tasks, aiming
to understand its role in connecting different modalities, providing coherent explanations, supporting meaningful evaluation, and
facilitating generalization to novel situations in the open domains. We consider the role of different knowledge types, including
traffic rules, commonsense expectations, and causal links, in facilitating robust and explainable AI agents. Despite the promise
of NeSy AI for traffic prediction tasks, we also discuss its limitations in terms of data quality, brittleness of rules and constraints,
and challenges in integrating neural and symbolic components. We conclude with a list of open research directions geared to-
wards reliable NeSy predictions for traffic, tailored to social good and human-AI collaboration.
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1. Introduction

Developing reliable intelligent agents for the traffic domain has been an attractive pursuit due to the high-stake
nature of this domain and the magnitude of its market [1]. While intelligent traffic agents leveraging the latest neural
or symbolic advancements perform well in the lab, real-world usage has been marked with notorious examples that
show that their reliability is far from the desired mark. A notable example of autonomous driving is the Uber
fatality [2], which occurred due to the system focusing on a single modality (the perception system), rather than
fusing multiple modalities of sensory information. Besides fusing multi-sensory information, the Uber accident
shows a larger issue: autonomous vehicles may not know how to deal with inconsistent or unknown situations. For
example, if an autonomous vehicle perceives an unknown object or faces a novel situation (e.g., an unknown traffic
signal, like a flashing yellow light [3]), it may react unpredictably. It may choose to ignore unknown objects [2] or
extrapolate novel situations to prior experiences based on its underlying pattern-matching mechanisms. An example
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of the latter behavior is the accident of the Google Autonomous Vehicle (AV) in 2016, caused by the AV switching
lanes after detecting sand bags.1 Similarly, considering the related task of traffic monitoring, a processing system
may detect that a vehicle and a bike lane overlap, but it would not be able to deduce that this represents a traffic
violation. Moreover, the intelligent system may fail to understand certain context-specific behaviors [4] that happen
in particular locations or at particular times. These experiences highlight the imminent need for reliable systems
that are robust, explainable, and responsible. Merely relying on gathering sufficient data for each of these specific
scenarios is unrealistic [5], thus emphasizing the need for novel approaches.

Meanwhile, Neuro-Symbolic (NeSy) reasoning, or the integration of neural and symbolic reasoning has become
a staple of artificial intelligence and is often considered essential for robust intelligence in high-stake domains [6].
Given the high-stakes nature of the traffic domain, NeSy robust intelligence is a necessity for autonomous vehicles
and traffic monitoring systems that are being entrusted with human-level decision-making. We see NeSy as a holis-
tic platform to address these challenges in the traffic domain. By leveraging NeSy reasoning in both ego-centric
autonomous driving and objective traffic monitoring, the traffic domain can benefit from advanced decision-making
capabilities, enabling safer and more efficient transportation systems. NeSy addresses the knowledge integration
problem of neural networks by supporting the fusion and abstraction of diverse information sources [7, 8]. This is a
hallmark task for autonomous driving and the traffic domain where there are different types of information, includ-
ing those from sensors, vision, and log data. In fact, there are autonomous driving data sets that have this type of
multimodal data [9, 10]. By synthesizing such diverse and complementary types of information, symbolic reasoning
enables them to be associated with domain-specific knowledge and rules, such as traffic regulations and traffic flow
principles. It also enables integration with commonsense knowledge that may enable the models to generalize better
to novel situations [11, 12]. NeSy reasoning provides an opening for the resulting models to be explainable, by
transforming the explicit knowledge into human-readable format; adaptive, by leveraging the knowledge to transfer
better to novel situations; responsible, by providing a mechanism for communication with the model in a meaningful
way; and collaborative, by facilitating the extraction and representation of meaningful information [13]. Yet, while
NeSy reasoning is effective in various domains, its strengths and weaknesses for the traffic domain have not been
systematically explored.

In this paper, we investigate the role of NeSy reasoning in addressing the complex challenges present in the traffic
domain. Given the vastness of the traffic domain, we scope this paper to posthoc prediction tasks, as opposed to, for
instance, real-time decision-making in racing or simulations. Posthoc prediction tasks are less complex and enable a
clearer assessment of the reasoning capabilities of the methods employed. Posthoc reasoning is important because if
an accident occurs, insurance companies, police officers, and other stakeholders will want to know what happened,
who is responsible, and why. We first provide background about prior work on monitoring autonomous vehicles and
relevant neuro-symbolic methods (section 2). We focus on two core subproblems that stem from complementary
perspectives: autonomous driving (first-person view) and traffic monitoring (third-person view) (section 3). We show
common failures in both subproblems, and discuss the challenges and possible solutions highlighting the need for
NeSy representations and reasoning. We consider the following symbolic knowledge within broader NeSy solutions:
commonsense knowledge, rules, soft constraints, and causal reasoning. We describe their role to support better
robustness on novel tasks and explainability to relevant users (section 4). As NeSy AI development also introduces
tradeoffs, we discuss three key limitations and challenges in section 5. We conclude with a list of challenges that
motivate future work for NeSy reasoning in the traffic domain (section 6).

2. Background

Our paper focuses on NeSy AI for posthoc reasoning in the traffic domain. In the following sections, we describe
the current state of the two key variants of this challenge: autonomous vehicles and traffic monitoring, and we
provide background on knowledge graphs. Namely, for the remainder of the paper, we will examine traffic domain
tasks from two perspectives. Autonomous vehicles will be in the “first-person view”, meaning we are considering

1https://www.wired.com/2016/02/googles-self-driving-car-may-caused-first-crash/, accessed on July 12, 2023.
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one autonomous vehicle at a time, typically from the perspective of the AV itself. When we talk about a larger world
view, e.g., the “third person view,” that means that we are considering traffic situations from an objective standpoint,
e.g., a stationary camera.

We provide background on common representation and aggregation methods in the form of knowledge graphs
to explore the synthesis of NeSy approaches and their potential application in traffic domain challenges. We do
not focus on novel neural architectures for end-to-end training of autonomous vehicles and traffic monitoring sys-
tems [14], as these are consistently changing and have been covered well in recent survey papers for first-person
driving [15], object recognition [16], and for safe driving [17], as well as broad surveys on NeSy methods and
challenges [18–20].

2.1. The Current State of Autonomous Vehicles

Autonomous vehicles (AVs) have garnered significant attention2, but their safety remains a top concern. For
example, Cruise autonomous vehicles lost their license after a tragic incident.3 One of the main reasons is that au-
tonomous vehicles are susceptible to out-of-domain errors, making them unreliable operators in real-world contexts.
There are many ways to “fool” an autonomous vehicle [21], and the failure cases cannot be enumerated.4 While there
have been developments towards test suites of plausible failure modes [24], creating more accurate failure detection
techniques is not enough. Instead, the field needs a stronger focus on accountable autonomous driving technology,
with evaluations that leverage safety. One proposal is to design a driving system that can introspect about their
behavior and learn through experience. For example, in the Uber self-driving accident, a software system within the
AV ignored the pedestrian detected by the LiDAR sensor to be a false positive detection, resulting in a pedestrian
fatality [2]. The software system lacked the common sense to know that an object moving in the middle of the road
is likely a pedestrian. The autonomous vehicle should learn from this mistake and ensure it will not be a repeated
failure case. NeSy reasoning can be used to integrate symbolic rules with multimodal vehicle and traffic data. In
fact, this type of system with a set of logic and datalog rules was proposed [25] and is currently used by BMW5. This
shows potential for NeSy in autonomous driving: integrating symbolic methods with extensive datasets to enhance
the safety and robustness of autonomous vehicles.

2.2. The Current State of Traffic Monitoring

Traffic monitoring is an essential instrument to improve road safety and security in intelligent transportation
systems. Together with autonomous vehicles, traffic monitoring is expected to become a key component of future
smart city infrastructures [1]. Intelligent traffic monitoring has a wide range of use cases, which typically assume the
existence of information from a large array of sensors deployed along highways, city roads, and intersections. The
goal of traffic monitoring is to derive actionable knowledge from these sensory captures of the physical environment.
To achieve that, the intelligent system needs to be able to understand the elements of a scene in a given moment,
understand whether it depicts an anomalous configuration (e.g., an accident or some other event), and perform
diagnostics and complex inference through tasks like introspection and forecasting. Predominantly, prior work has
focused on perceptual tasks, such as identifying the number of lanes, segmenting the traffic participants in a scene, or
detecting congestions [26]. Recent work has shown a stronger focus on performing inference and causal reasoning,
as illustrated by the task of causal prediction, BDD [27], the TrafficQA [28] task that requires six forms of complex
inference, and by the suite of knowledge-intensive textual inference tasks proposed by Zhang et al. [5]. The methods
that address traffic monitoring tasks typically rely on deep neural networks with no explicit modeling of causal
inference and commonsense reasoning to support flexible inference and generalization beyond visual similarities [5,

2In May 2018, Andrew Ng said that autonomous vehicles are “here”: https://medium.com/@andrewng/
self-driving-cars-are-here-aea1752b1ad0

3“California’s Department of Motor Vehicles says in a statement that it has determined that Cruise’s vehicles are not safe for public oper-
ation and that the company ‘misrepresented’ safety information about its autonomous vehicle technology” via https://www.wired.com/story/
cruise-robotaxi-self-driving-permit-revoked-california/

4Some examples of failure cases include security hacks [22], or adversarial attacks [23]
5https://www.oxfordsemantic.tech/blog/reasonable-vehicles-rule-the-road
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Table 1
Example tasks for first (1st) person view (autonomous vehicles) and third (3rd) person view (traffic monitoring) that demonstrate the need for
NeSy Representations and Reasoning.

Task Classification View Sample Challenge

Safety 1st Pass a dynamic driving test for autonomous vehicles.
Safety 3rd Understanding of rare road events, e.g., extreme weather.
Perceptual 1st Classify out-of-domain objects in the AV’s vicinity.
Perceptual 3rd Understanding elements of traffic scenes based on perception (e.g., number of vehicles).
Inference 1st Introspection: sensory failure, NeSy for reliance on secondary modalities
Inference 3rd Establishing links between observed events and their likely causes.

28]. Meanwhile, traffic ontologies and knowledge graph-based methods for traffic monitoring exist, with limited
applications to tasks like scene search and congestion detection [1, 29]. The tighter integration of existing neural and
symbolic mechanisms holds the promise to advance the ability of the SOTA methods further in terms of accuracy,
robustness, transparency, and responsibility.

2.3. Knowledge Graphs for Aggregating Symbolic Knowledge

Knowledge graphs can provide a comprehensive representation of the complex factors that influence traffic safety,
perception, and inference. A knowledge graph in the traffic domain would include entities such as vehicles, roads,
traffic signals, events, locations, traffic regulations, public transportation, and infrastructure. Edges would map the
relationships between these entities, such as vehicles traveling on roads, events occurring at locations, and traf-
fic regulations applying to specific roads. This allows us to identify patterns, correlations, and potential risks that
would otherwise be difficult to discern. Reasonable knowledge can be provided to the monitoring system from
a commonsense knowledge base. This knowledge can be parsed into a W3C web standard, e.g., OWL 6. Com-
monsense knowledge bases are key tools for developing systems that understand natural language descriptions
and produce explanations. CYC is regarded as the world’s longest-lived artificial intelligence project [30], with a
comprehensive ontology and knowledge base with basic concepts and “commonsense rules,” but there have been
significant challenges to using CYC for real-world applications in natural language processing (NLP) and com-
puter vision (CV) [31], including its proprietary nature and the difficulty of grounding of situations to CYC. Speer
and Havasi [32] contributed ConceptNet5, a freely-available semantic network of popular commonsense knowledge.
The combination of popular commonsense knowledge sources into a single graph, as done within the CommonSense
Knowledge Graph [33] and NextKB [34] provides an opportunity for richer and more comprehensive knowledge
to be used for reasoning in traffic. The aggregated commonsense knowledge can be further organized into high-
level knowledge dimensions [35] and aligned with commonsense axioms [36]. Meanwhile, domain knowledge can
be distilled from driving manuals to improve the model’s understanding of traffic rules and situational constraints.
Combining these complementary kinds of knowledge is expected to enhance the comprehension of ambiguous or
contextually rich language by providing contextual cues and background information [5]. Knowledge graphs are
a powerful tool for capturing and synthesizing the multifaceted variables underlying traffic safety, thus facilitating
more informed decision-making for enhancing road safety measures.

3. Traffic Understanding Needs NeSy Representations and Reasoning

Traffic understanding is a complex multimodal challenge involving object detection and classification, object
localization, trajectory prediction, sensor fusion, and planning. Traffic understanding encapsulates a unique blend of
low-level perception tasks [15] and human-level symbolic reasoning and cognition [37], making it a neuro-symbolic
goal. Curiously, despite the importance of reliable traffic understanding, there is no clear organization of the tasks

6https://www.w3.org/TR/owl-features/
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Fig. 1. Our taxonomy of traffic tasks: safety, perceptual, and inference.

within this domain. We bridge this gap by organizing the traffic understanding tasks into a taxonomy in Figure 1. Our
taxonomy has three categorizations of tasks: Safety tasks (in Section 3.1), Perceptual tasks (in Section 3.2), and
Inference tasks (in Section 3.3). Each of these task categories has been considered from an ego-centric perspective
of an autonomous vehicle (first-person view) and the perspective of a traffic observer like a camera (third-person
view), resulting in corresponding variants. Table 1 shows first- and third-person view examples for each of the three
traffic task categories. We next review the tasks within each category in turn.

3.1. Safety

Safety in traffic domain tasks is of the utmost importance, as traffic fatalities are increasing,7 and as of recently,
traffic fatalities are at a 16-year high.8 One of the promises of intelligent traffic monitoring and autonomous vehicles
is to reduce driving fatalities and develop driver assistance technologies, which could mitigate injury and harm. How-
ever, safety in the traffic domain requires real-time analysis (data-driven neural processing) and decision-making
(symbolic reasoning), making it suitable for integrating neural and symbolic techniques. For example, consider a
traffic monitoring system that reports current traffic conditions. However, it is unreliable in weather conditions like
rain, sleet, and snow. Neural networks may struggle to learn patterns in these situations, and incorporating symbolic
reasoning can help mitigate and explain these extreme situations.

One challenge for autonomous vehicles is to solve dynamic driving tests, which mimic how human drivers are
evaluated in classroom settings as safe or unsafe drivers. For example, when humans learn to drive, we start by
memorizing a set of safe driving rules from a driving handbook. Recent work has learned these safe driving rules
from manuals [5, 38] to codify and standardize these behaviors in a common symbolic language. Generative mod-
els, such as Generative Adversarial Networks (GANs) [39] or Variational Autoencoders (VAEs) [40], can learn the
underlying distribution of driving data and generate new samples that resemble real-world driving situations. These
generative models can be combined with a symbolic system to create dynamic “dangerous” driving conditions [41],
e.g., construction zones, sporadic pedestrian crossings, etc. Previous work on reasonableness monitors [42, 43],
checked and validated reasonableness with a production-level reasoner [44]. It is essential to use these generated
tests in conjunction with real-world testing and validation, including diagnostics (see Section 3.3), to ensure the
safety and reliability of autonomous driving systems. Driving tests have recently been introduced from an objective
monitoring perspective, prompting agents to select the legal or reasonable course of action in a given situation [5].
Namely, the HDT-QA benchmark tests intelligent agents on human-driving tests for three driver categories (Mo-
torcycle, Car, and Commercial Driver) in each of the 50 US states, observing relatively poor performance across
representative language models despite their domain adaptation.

7In CA, traffic fatalities increased from “approximately 7.6% from 3,980 in 2020 to 4,285 in 2021.” via https://www.ots.ca.gov/
ots-and-traffic-safety/score-card/

8Via https://www.nhtsa.gov/press-releases/early-estimate-2021-traffic-fatalities
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Another task for ensuring safety in both AVs and traffic monitoring scenarios is event detection, i.e., understand-
ing anomalous situations and extreme environments. Datasets and challenges for event detection should include
various road types, traffic conditions, weather conditions, pedestrian interactions, and other potential hazards. In-
telligent traffic monitoring datasets have initially focused on detecting the occurrence of a certain event (e.g., an
accident). DeepRacer is an educational platform for autonomous vehicle racing, designed primarily to experiment
with reinforcement learning methods in intelligent control systems [45]. ROAD: The Road Event Awareness Dataset
for Autonomous Driving [46], has been designed to test the autonomous vehicle’s understanding of road events. Its
successor, ROAD-R, is a neuro-symbolic autonomous driving dataset that investigates whether the models remain
safe and consistently follow the environmental constraints throughout their performance [47]. One possible ap-
proach for tasks like ROAD-R is to design and implement memory-efficient t-norm losses for the task of event
detection in autonomous driving. CADP [48] is a spatiotemporally annotated dataset for accident forecasting using
traffic camera views. The Berkeley Deep-Drive dataset (BDD) contains real driving videos containing abundant
driving scenarios [27], where the task of the agent is to recognize the action in the video (e.g., the vehicle is acceler-
ating). There have been many other datasets for anomaly detection in road traffic using visual surveillance, surveyed
in [49]. Event detection in traffic is a crucial aspect that helps identify potential hazards and inform decision-making
processes, but addressing the challenges faced by AVs and traffic monitors requires a comprehensive approach
encompassing various safety, technological, and regulatory considerations.

3.2. Perception

The fusion of neural networks and symbolic reasoning is crucial in machine perception. Perception tasks have
been a challenge of NeSy reasoning over AI history, from early machine vision systems [50, 51] to cutting-edge
standardized models of human cognition [52]. In the traffic domain, perception tasks are the primary task: recog-
nizing objects, pedestrians, road signs, traffic lights, and other vehicles. While many traffic systems use end-to-end
learning [14], we often require additional (symbolic) reasoning to make trustworthy decisions. For example, con-
sider driving in a new rural environment. The vehicle may encounter an object it has never seen before: a fallen tree
branch. Since the vehicle has not seen this object before, it chooses to ignore it, causing it to run over the branch,
which gets stuck in its undercarriage, preventing it from moving properly.

Scene understanding can be seen as an umbrella task that encapsulates many of the visual perception tasks
into a common framework. Several datasets focus on a fine-grained understanding of the environment, such as
object segmentation [53, 54] and scene entity prediction [55]. The Stanford Cars dataset [56] contains 3D object
representations for fine-grained categorization. The VERI-Wild [57] dataset evaluates the ability of vision models to
re-identify vehicles in surveillance camera footage. The related Stanford Drone Dataset [58] tests systems’ ability to
predict human trajectories in crowded scenes. TrafficQA [28] consists of over 60K QA samples based on over 10k
traffic scenes. Most of the questions in this dataset belong to the category of basic understanding, e.g., how many
lanes are there on the freeway? The successful completion of these traffic understanding tasks lays the foundation
for addressing the out-of-domain challenges of autonomous vehicle perception.

The main challenge in traffic perception is handling out-of-domain classification. There are perception chal-
lenges for autonomous vehicles [9], but these are classic supervised machine learning tasks: with a training and
test dataset. These do not characterize the unique challenges in perceiving new objects while driving. For example,
consider an autonomous vehicle driving through a new neighborhood. The perception sees a skateboard and cor-
rectly identifies the object. The problem is that the vehicle has no symbolic knowledge or context. As humans, we
know that if we see a skateboard in a neighborhood, then many children are likely to follow the skateboard. Other
challenges include adversarial attacks, where a few pieces of tape can fool the perception system into thinking a
stop sign is a 45-mph sign [59]. One way to mitigate perception challenges in intelligent traffic monitoring is to de-
velop representative datasets and understand the relation between task properties and the properties of the task [5].
Possible NeSy solutions include adding contextual symbolic information, e.g., the shape, size, and color of the sign,
or designing rule-based stress tests to find the point of failure [60]. Incorporating NeSy approaches into perception
systems for autonomous vehicles can create safer, more reliable vehicles in real-world environments.



Table 2
Examples of BDD-QA, TV-QA, and HDT-QA from [5]. (*) denotes the correct answer.

BDD-QA
Q: The car in front of the car is slow, but the traffic is also heavy in other lanes, what will the car do next?
A1: The car speeds up and turns to the right; A2: The car moves back to the right side of the road; A3: The car slows down(*);
A4: The car backs up slowly

TV-QA
Description: The POV car is quickly going down a highway. The POV car approaches an intersection. There is a red sedan in the opposing
lane waiting to turn and cross the intersection. The red sedan quickly makes a left turn. when the POV car enters the intersection. The POV
car veers to the right. The red sedan hits the side of the POV car.
Q: Could the accident be prevented if the involved vehicles change lane or turn properly?
A1: Yes(*); A2: No, that was not the main cause of the accident

HDT-QA
Q: If you find yourself in a skid:
A1: Brake lightly; A2: Brake abruptly; A3: Stay off the brakes(*)

3.3. Inference

Many realistic tasks require higher-order inference of factual or hypothetical aspects of a situation. Such inference
is analogous to model-based diagnostics in computer science [61, 62], which refers to the process of identifying and
analyzing problems, errors, software faults [63], or issues in complex computer systems. The goal of diagnostics
for AVs is to understand the root cause of a problem or malfunction and provide insights into how to resolve it
effectively, similar to the role of a highway patrol officer to patrol for unsafe driving conditions, or a mechanic to
monitor and maintain vehicles. A related task from a traffic monitoring perspective is simulating situations forward
or backward to enhance the model’s understanding of a situation. The quest for incorporating inference skills in
traffic agents represents a shift in paradigm, from the dominant focus on perception to understanding, which requires
abundant domain knowledge and commonsense reasoning methods.

In the AV domain, the task of introspective diagnostics has been popular, covering both factual and hypothetical
reasoning. For example, consider an introspective case of self-diagnosis where an autonomous vehicle consistently
drives well on the freeway. When alerts or diagnoses appear, the vehicle can self-diagnose and repair the problems
without issues. However, the autonomous vehicle self-diagnosis system may have limitations in nuanced situations
like construction zones or missing lane markers, leading to potential errors that go unfixed or ignored. For example,
if a self-driving car’s sensory system fails due to weather [64], how can the vehicle rely on other sensory modalities
to safely continue its journey? In this case, it is crucial to have a comprehensive understanding of an autonomous
system, which a model-based system can represent. Autonomous vehicles claim to be “self-diagnosing” [65, 66],
they can find the root cause of their errors and fix it. However, there is still a need for model-based, or symbolic rea-
soning for, e.g., reasoning about plans [67] and hypothetical reasoning [68]. By incorporating data-driven diagnosis
with a model-based (symbolic) diagnostic system, users can be more confident in the AV system’s trustworthiness
and reliability.

From a traffic monitoring perspective, tasks relating to both factual and hypothetical reasoning have been con-
sidered either separately or jointly [5, 28, 69]. The BDD-X dataset [69] enhances the popular BDD dataset consisting
of action descriptions, by adding explanations (e.g., the vehicle accelerated because the traffic light was green). This
dataset was reused once more to create BDD-QA [5], a causal reasoning QA dataset generated based on careful en-
gineering over the descriptions of actions and their explanations. BDD-QA can be seen as a decision-making dataset
for predicting the best course of action, where the actions can be grouped into seven categories: accelerate, merge,
drive, slow, stop, turn, and navigate. The QA set of TrafficQA [28] includes six different aspects of reasoning prob-
lems, five of which can be categorized as inference tasks: attribution, introspection, counterfactual inference, event
forecasting, and reverse reasoning. TV-QA [5] extended TrafficQA with detailed captions for complex actual and
hypothetical reasoning over traffic situations in the text on four tasks: reverse reasoning, forecasting, counterfactual
reasoning, and introspection. An example of the three datasets from this work is shown in Table 2. By leveraging
these datasets, we can make advancements in traffic monitoring to enhance system reliability.



Fig. 2. NeSy paradigms for developing robust methods. Left: translate-and-reason approach, which leverages neural methods to create a sym-
bolic representation, and performs NeSy reasoning over this representation using, for example, language models and graph queries [1]. Right:
adapt-and-reason approach, which leverages background knowledge to adapt an existing neural (language) model, and uses this model for neural
reasoning in a subsequent step, similar to [5].

4. NeSy Methods for Traffic Understanding

We expect that NeSy reasoning methods can enable reliable technology for traffic understanding. Next, we review
prior methods contributing to this goal along two complementary aspects: robustness and explainability.

4.1. NeSy for Robust Traffic Understanding

NeSy can leverage background symbolic knowledge in a neural architecture to glue together information from
various domains, modalities, and sources. By leveraging the wealth of information encapsulated in these knowledge
bases, it becomes possible to bridge the gap between diverse modalities such as text, images, audio, and video.
By using knowledge to enhance traffic understanding, the authors in [70] create and evaluate knowledge graph
embeddings for autonomous driving. [55] enhance the knowledge graph for scene entity prediction in autonomous
driving. ITSKG [29] is a knowledge graph framework for extracting actionable information from raw sensor data
in traffic. CoSI [71] is a knowledge graph-based approach for representing information sources relevant to traffic
situations. The approach in these systems can be abstracted with a translate-and-reason paradigm (Figure 2 - left),
where first a symbolic representation is created, e.g., using neural methods, and then this representation can be
accessed and reasoned over in various neural and/or symbolic ways, including symbolic graph queries [29] or
natural language similarity [1].

While these methods rely on benchmark-specific training data, the robustness of methods can be tested through
a zero-shot evaluation procedure. We illustrate this on QA as it provides an interpretable framework for making
informed decisions about traffic management and safety. In [5], we used a natural language formulation of traffic
reasoning and experimented with equipping a language model with domain knowledge from a QA benchmark [72],
commonsense knowledge from a synthetically created QA set [73], and their combination. The resulting model was
evaluated on an unseen test set that evaluates causal inference, on which the aggregated knowledge performed the
best, the vanilla model was the worst, and commonsense knowledge was more beneficial than domain knowledge.
The contribution of various knowledge types was task-dependent: commonsense knowledge is most impactful for
complex and hypothetical tasks, like introspection, whereas retrieving domain knowledge is most effective for tasks
that require contextual decision-making and understanding of traffic rules [5]. To illustrate the complementarity
of these two knowledge types, let us consider the question what might be why a car is waiting in the intersection
when the traffic light is green? Its answer The car is waiting for pedestrians is well-supported by both kinds of
knowledge: commonsense knowledge can tell language models that cars will pass the crosswalk when driving and
crosswalk will appear at the intersection. In contrast, traffic domain knowledge tells the models that cars should
yield to pedestrians passing the crosswalk [5]. The approach in this work is representative of an adapt-and-reason
paradigm for NeSy, where background knowledge is first leveraged to adapt a language model (e.g., via fine-tuning),
after which the resulting neural model can be applied to perform neural reasoning (Figure 2 - right).

These findings suggest that by incorporating richer knowledge into the modeling process, we can unlock new op-
portunities for developing intelligent systems capable of reasoning across different modalities and delivering more



comprehensive and accurate results. Yet, we are only beginning to realize this potential. To this end, HANS [1] pro-
vides a theoretical neuro-symbolic framework for integrating different modalities and knowledge types into a single
neuro-symbolic system, consisting of six general processes: generation, semantic representation, augmentation, as-
sessment, infusion, and inference. The HANS framework can be seen as an extension of the translate-and-reason
paradigm in Figure 2 - left with human-in-the-loop functionality. In such frameworks, the combination of multi-
ple modalities and knowledge types for the traffic domain remains an open challenge, which may be addressed
by using scene knowledge graphs (SKGs) [74] as a common representation, in conjunction with traffic monitoring
formalisms like the Scene Ontology [75] and the Traffic Monitoring Knowledge Graph [1]. Following [74], distant
supervision data can be extracted to transform situations into such SKGs, and the SKGs into decisions or classifica-
tion outputs. These are open-ended research directions that require significant innovation both for the traffic domain
and multimodal reasoning in general.

4.2. NeSy for Explainable Traffic Understanding

NeSy can facilitate explainable traffic understanding by analyzing large amounts of traffic data with added sym-
bolic representations that provide explainability. This explainable symbolic representation can take the form of
rules [76], formal logics [77], or frame-based representations [78] that can interpret complicated visual scenarios.
For example, if an autonomous vehicle is unsure of what it is perceiving, instead of showing a saliency map [79] on
possibly irrelevant parts of the input image, we can construct an interpretable, natural language explanation showing
that the vehicle was unsure of what it perceived.

These explanations can be further developed with domain-specific information. Some examples include an “ex-
plainable knowledge enabled system”, which uses domain knowledge to incorporate user context [80], or proposed
work to use self-determination [81] to explain how and why certain decisions or actions are taken. For example,
consider the example from Section 4.1: a vehicle is waiting at the intersection when the traffic light is green. If the
vehicle decision is made by a machine learning model based on commonsense knowledge, this can be explained
by referring to the relevant facts, rules, and principles stored in the knowledge base: although the vehicle should
“proceed” at a green light since there is a pedestrian in the way, the vehicle should yield until it is safe to proceed.
This makes it easier to understand the decision-making process and to identify any biases or errors that may have
occurred.

By combining neural networks and symbolic reasoning, NeSy reasoning can bridge the gap between opaque deep
learning models and symbolic-level human understanding. This enables explanations that are more transparent, in-
terpretable, and dynamic. For example, consider our prior work on a multimodal monitoring system for autonomous
vehicles [82]. This system adds a set of domain-specific rules and commonsense knowledge to explain the failures
between parts, e.g., when the vision system and sensor system disagree on what is being perceived. These explana-
tions also reflect (and explain) the inherent multimodal nature of autonomous systems and traffic. Neural networks
learn from complex, high-dimensional data, and symbolic reasoning, like diagnostics brings transparency and inter-
pretability. By integrating these two approaches, neuro-symbolic systems can leverage the strengths of each. This
also aligns with the need for explanations for accountability, so that we can diagnose and understand the errors in
complex systems.

5. Trade-offs and Limitations of NeSy in the Traffic Domain

So far, we have focused on the benefits of NeSy reasoning in the traffic domain. However, there are several
limitations of using a NeSy approach; and in this section we discuss the drawbacks and trade-offs between using
NeSy versus other AI solutions, e.g., machine learning:

1. Traffic data for NeSy inference and evaluation: Traffic monitoring and autonomous driving data [9] are aimed
at neural approaches. For example, in autonomous driving, the driving challenges9 are designed to facilitate
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end-to-end neural based architectures. This makes sense, as low-level sensor data is readily adaptable to neural
reasoning. Similarly, these challenges do not look at complex tasks like ensuring robustness and safety. De-
signing traffic challenges for robustness and safety would require access to comprehensive, multimodal, and
diverse datasets with various scenarios, traffic patterns, and weather conditions. Without this representative
data, NeSy models will not be competitive against purely neural architectures, which can learn and gener-
alize on traditional traffic datasets. For example, consider an autonomous vehicle that encounters a dynamic
hazard: a vehicle exiting a parking spot or a pedestrian crossing the street outside of a crosswalk. Both exam-
ples are critical to detect and understand; merely detecting the type of hazard is not enough to avoid future
harm. Therefore, designing effective safety challenges with (1) enhanced data collection are (2) crucial for
maximizing the potential of NeSy approaches and advancing robustness in the traffic domain.

2. Limits and brittleness of rules and constraints: Rule coverage and completeness are of prime importance for
NeSy and symbolic approaches in safety-critical and mission-critical domains like traffic. However, construct-
ing comprehensive rule sets and knowledge bases covering all scenarios is impractical. A large, specific set
of rules may hinder adaptability, constraining the model’s ability to respond effectively to new scenarios. For
example, consider an autonomous vehicle that encounters a new scenario: a family of geese crossing the street.
The question is whether a new rule should be created to adapt to the “family” of geese, or whether the existing
“animal crossing the street” rule would suffice. One possible solution is to “loosen” the constraints and instead
use NeSy reasoning when a neural approach is uncertain or when the scenario is deemed out of scope. This
approach would ensure more reliability and robustness, especially if the NeSy “monitor” could adapt to new
scenarios, especially when the neural approach is difficult to modify after significant training. While the NeSy
reasoning can bring added trust to AI in the traffic domain, there is a careful trade-off between rule specificity
and adaptability.

3. Integration between neural and symbolic approaches: NeSy representation and reasoning combines symbolic
AI with neural approaches. While symbolic approaches offer explainable decision-making processes in traffic
management, they struggle to handle the complexity of traffic data. Neural architectures can handle complex
data but struggle with the out-of-domain instances that are inherent in real-world traffic scenarios. In contrast,
NeSy combines the flexibility of neural networks with the transparency of symbolic reasoning, enabling it to
capture intricate patterns and learn from data-rich environments. The key issue with combining symbolic and
neural approaches in the traffic domain is the integration between symbolic and neural approaches. Many of the
state-of-the-art neural approaches for autonomous driving are end-to-end, making it difficult to integrate other
approaches without substantial effort. Symbolic approaches contain intricate representations, like ontologies,
rules, and knowledge bases. These may be difficult to adapt to a neural network that is processing low-level
data, such as numeric sensory readings. Therefore, the choice of NeSy over other AI approaches in the traffic
domain relies on careful integration between neural approaches and symbolic approaches.

6. Conclusions and Outlook

In this position paper, we examined NeSy representation and reasoning in the context of traffic understanding
tasks. We considered traffic understanding tasks, defined as posthoc prediction tasks, from two views: first-person
(autonomous vehicles) and third-person (traffic monitoring), and contributed a taxonomy for traffic domain tasks:
safety, perception, and inference tasks. We provided examples of the tasks in both views and discussed prior work
on developing benchmarks, tasks, methods, and knowledge sources for each task. Throughout the paper, we discuss
prior work providing evidence that NeSy plays a pivotal role in creating robust and trustworthy traffic systems,
contributing to the ultimate goal of creating a more reliable transportation infrastructure. To this end, prior work
has combined neural and symbolic techniques to enhance the models’ ability to fulfill the societal requirements
of robustness and explainability. The taxonomy designed in this paper to organize these tasks provides a useful
abstraction of the traffic understanding tasks. Yet, the analysis in this paper highlights that the traffic domain covers
a rich set of tasks, and relies on difficult, open-world research problems that we are only starting to understand
and address as a community. Challenges with data quality, brittleness of rules and background knowledge, and the
different nature of neural and symbolic approaches pose challenges for developing NeSy systems.



Research on developing AI for the traffic domain has gradually been switching its attention to NeSy evaluation,
representation, and reasoning methods, in recognition of the requirements of its affected users and the broader soci-
etal context. We believe that reliable intelligent agents for traffic need to satisfy the CARE (Controllable, Adaptive,
Responsible, and Explainable) [13] human-centric principles to make a positive impact on people and society as a
whole. Yet, our paper shows that there is significant space for improvement of the current AI technology for the traf-
fic domain. Here, we list three key research directions, posed as requirements, to motivate reliable NeSy reasoning
for real-world traffic situations:

1. Representative evaluations for traffic systems need to be multimodal, interactive, and realistic. While there
are several autonomous driving challenges, including multimodal tasks,10 there is a lack of neuro-symbolic
challenges with these properties. The most recent challenges in trajectory prediction are hybrid tasks,11 which
involve navigating through dynamic and unpredictable environments with a wide range of potential interac-
tions and uncertainties. Upgrading these tasks to more realistic settings that cover the entire complexity of the
safety, perception, and inference tasks is a notable future work goal. We expect that NeSy will be a great asset
in tackling such tasks because it gives us the tools, e.g., rules, KBs, and reasoning to address the complexities
and uncertainties in real-world traffic applications. Conversely, NeSy techniques can be applied to create these
tasks, by ensuring that the task environments confine to the rules and commonsense expectations associated
with the real-world situations.

2. Comprehensive knowledge for traffic AI models must contain a high-quality combination of ontological con-
cepts, rules, domain knowledge, and commonsense knowledge. As discussed in subsection 4.1, recent work
has shown that the plurality of knowledge types provide complementary insights [5], which can be combined
to form a comprehensive base of background knowledge and train robust and explainable models. We expect
that comprehensive sources of knowledge or methodologies for combining knowledge on the fly in light of the
context will be essential for AI that pertains to the human-centric CARE principles and performs reliably. We
expect that NeSy methods are uniquely positioned to contribute to developing such resources and their usage
for downstream reasoning. A key challenge to unifying different knowledge types is their often incompatible
representation formats, which entail a variety of inference engines and expressivity. KGs, ontologies, and rule
systems come in different flavors in different communities, ranging from RDF/OWL (e.g., CYC) to textual
graphs (e.g., ConceptNet). We remain neutral to the best representation formalism for traffic reasoning, hy-
pothesizing that the best formalism for each task may vary: safety applications may require strict enforcement
of rules, whereas inference chains may benefit from a more flexible representation with lower expressivity.

3. NeSy user-facing models must be robust, explainable, and controllable by humans in intuitive ways. Traffic
monitoring interfaces enable users, such as industry analysts and security officers, to quickly react to traffic
events, like accidents and parking violations. If AI models are intended to support analysts in such sensitive
scenarios, they must perform robustly, be transparent about their predictions, and provide mechanisms for the
user to adapt the AI behavior if needed. Similarly, user-facing AI in autonomous driving, assisting drivers
or car part manufacturers, must be robust to unforeseen road configurations, provide transparency into their
proposed actions, and enable users to customize and control the model behavior. While developing human-
centric AI models is at the forefront of NeSy AI for various applications, the traffic domain is especially
critical given its high stakes and profitable market. Besides challenges with developing robust and explainable
methods in a posthoc manner, which is the scope of this paper, real-world application of these models brings
additional requirements such as quick reaction time and high availability.

Embracing these principles can lead to advancements in applying intelligent agents in the traffic domain, enabling
safer, more efficient, and reliable traffic systems. For example, consider the third person’s view of stop lights or
traffic control systems. Traditional traffic lights follow a fixed schedule, leading to inefficiencies and congestion,
especially during peak hours or in response to unexpected events. Instead, let us consider an AI-powered traffic
light, with NeSy representation and reasoning. The control system can dynamically adapt signal timings based on
real-time traffic conditions, reducing congestion and improving the overall flow of vehicles. It is also explainable,
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and it can signal the reason why the light is taking so long. This AI-enabled traffic light would also have an impact
beyond saving time and frustration. In cases of an emergency, the traffic light could quickly adjust lights to clear a
pathway for emergency vehicles, helping to lives. In conclusion, NeSy reasoning is imperative to safety in the traffic
domain; thus, we encourage the development of NeSy challenges and methods to reduce traffic accidents, reduce
congestion, save lives, and foster a culture of responsible driving.
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