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Abstract. Knowledge Graphs (KGs) consist of a set of triples where a triple is a link between either two entity nodes (relational
triple) or an entity node and a literal node (attributive triple). Similar to relational triples, attributive triples also provide semantics
that could benefit the task of link prediction (LP) on KGs. Hence, some embedding-based LP methods have been introduced in
the past which leverage both kinds of triples. This paper introduces a novel approach named LitKGE where literals (specifically
numerical literals) are further exploited to improve the task of LP by making implicit information that is present in the KG
explicit. This is performed by generating property paths starting from an entity node leading to a literal node and considering
these paths as features for the entity. The features are then incorporated with existing LP or Knowledge Graph Embedding
(KGE) methods. LitKGE is evaluated on three standard LP datasets, namely FB15K-237, YAGO3-10, and LitWD48K. The
results indicate that LitKGE outperforms the state-of-the-art KGE models which use numerical literals.

Keywords: Knowledge Graph Completion, Knowledge Graph Embedding, Link Prediction, Numeric Literals

1. Introduction

Knowledge Graphs (KGs) are composed of structured information to describe entities in a certain domain,
and the interrelations between them. Various KGs such as DBpedia [15], Wikidata [24], and YAGO [17] have
been published which play a vital role in the recent massive interest in using KGs for tasks such as question
answering, search, and recommendation systems [25]. In this paper, KG is considered as a set of triples where
a triple represents a link between two entity nodes or an entity node and a literal node. The former kind of
triples is referred to as relational triples and the later as attributive triples. Similar to [11], this paper also uses
these terms to refer to the respective triples. For example, in Figure 1, the triple <Paper_B, nominatedFor,
Best_Paper_by_Emerging_Authors> is a relational triple whereas <Anna, age, 24> is an attributive
triple.

As mentioned above KGs are crucial in capturing and representing facts that could be used in many applications.
However, KGs are never complete due to the open-world assumption. In order to address this problem, the most
common solutions perform Link Prediction (LP) which is typically referred to as the task of predicting an entity that
has a specific relation with another given entity, i.e., predicting the head entity h given (relation r, tail t) or the tail
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Fig. 1. An example graph with entity nodes depicted as rectangles and literals as ovals.

entity t given (h, r), with the former denoted as (?, r, t) and the latter as (h, r, ?) [25]. For example, (?,
DirectorOf, Wednesday) denotes the prediction of the director of the tv-series Wednesday, while (Tim
Burton, DirectorOf, ?) represents the prediction of films directed by Tim Burton. In general, LP methods
could be categorized as embedding-based (i.e., learning latent representation for entities) or non-embedding based
models. Few of the embedding-based approaches (Knowledge Graph Embedding (KGE) models) perform LP by
utilizing the different kinds of literals present in the KGs [11]. One of those models is LiteralE[14] which uses both
relational and attributive triples.

In this work, we investigate the benefits of making implicit information explicit to improve the task of LP. This
could be achieved using the property paths leading to numerical literals as features of those entities which are
indirectly associated with the literals through graph traversal. For instance, in Figure 1 given a paper (i.e., Paper_A,
Paper_B, or Paper_C), the average age and the average number of papers of its authors could be used to
determine if the paper can be nominated for the Best_Paper_by_Emerging_Authors award. Moreover, this
information also has a role in providing the semantics required to determine whether Paper_A should be close
to Paper_B or Paper_C in the vector space. This is done by generating and treating property paths that lead to
literal nodes as features of entities. author_age and author_papers are among the property paths that could
be generated from Figure 1. For the entity Paper_C, the average of the age values of Lina and Martin (i.e., 60) is
taken as the value for the first feature (<Paper_C, author_age, 60>).

The generated features could be used to further enrich the attributive triples and in turn to improve the LP task.
Hence, in this work, a new approach named LitKGE is proposed to enhance the performance of KGE models with
literals. Furthermore, it could be integrated with many KGE models which use numerical literals such as LiteralE,
TransEA [26], etc.

Note that this work is based on Chapter 7 of the first author’s doctoral thesis [8] which is not peer-reviewed. It
formulates and addresses the following research question: Does generating entity features based on property paths,
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and incorporating these features into existing KGE models result in improving LP tasks? Following are the main
contributions that are achieved in this work while attempting to answer the question:

– A novel approach named LitKGE which generates features for entities in order to enhance the standard KGE
models such as LiteralE, is introduced. LitKGE is a universal method which can be integrated with any KGE
model which utilizes literals.

– LitKGE is evaluated on three LP datasets: FB15K-237[23], YAGO3-10[6], and LitWD48K[9]. These datasets
are extended with the generated features and the extensions are made publicly available to facilitate further
research1.

– The experimental results indicate that making the implicit information explicit enabled LitKGE to outperform
the State-Of-The-Art (SOTA) models.

The rest of the paper is organized as follows: Section 2 presents the SOTA KGE methods followed by a formal
definition of the LP problem along with an overview of the base models considered in this work in Section 3. A
detailed discussion on the proposed methodology is given in Section 4. The experiment settings and the results
obtained are provided in Section 5. Finally, Section 6 summarizes the paper and points out directions for further
research.

2. Related Work

Different KGE methods have been proposed so far, namely, MTKGNN [22], TransEA, KBLRN [7], and LiteralE
which leverage numerical literals for the task of LP [11]. MTKGNN and TransEA utilize literals by performing
the task of predicting the literal value for a given entity. On the other hand, KBLRN is a method which works by
combining relational, latent, and numerical features together. The numerical features are obtained by computing
the difference between the numerical literals of the head and tail entity and taken as a good predictor for a given
relation.

LiteralE is a universal approach that incorporates literals into latent feature methods (KGE models) such as
DistMult and ComplEx via a learnable parametric function. This function takes as input an entity embedding and a
literal feature vector and maps them to a new vector of the same dimension as the entity embedding. The resulting
literal enriched vector is then passed as input to the given LP scoring function. LiteralE-AT [16] extends LiteralE
with more semantics from the textual labels of attributes by considering these labels as textual literals. Transforming
numeric and textual literals into entities is another approach introduced recently [2]. Similarly, in [20], a set of
universal preprocessing operators are proposed which can be used to transform KGs with literals for numerical,
temporal, textual, and image information. In another related work [21], literals are converted into entities and used to
learn embeddings for KGs specifically for the task of quality monitoring for welding in the manufacturing industry.
These approaches could be applied to datasets with few triples containing numerical literal values. However, when
handling millions of attributive triples, the challenge of model scalability may arise from converting all literals into
entities. Furthermore, such literal-to-entity transformation can lead to skewed datasets, with many entities appearing
only in the tail position.

KGA [5] is an approach that learns the representation of a hyper-relational KG containing numerical literals in
either triplets or qualifiers. In another work [18], a spatial link prediction method is introduced for scenarios where
the knowledge graph lacks entity relationships but contains literal values. Note that the approach is particularly
tailored for spatial KGs with a limited number of entity relationships. LitKGE differs from all the above-mentioned
models because it utilizes literal information not only for those entities which are directly connected to the literals
but also for others which are indirectly associated with the literals. This enables LitKGE to generate numerical
features for entities that do not occur in the set of attributive triples. Hence, LitKGE exploits the semantics present
in the numerical literals better than the SOTA models with literals.

Generating features for entities in KGs has been investigated recently in Literal2Feature [1] for basic machine
learning tasks such as regression and clustering of entities and the results achieved indicate that literals contain

1https://github.com/GenetAsefa/LitKGE

https://github.com/GenetAsefa/LitKGE
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useful semantics about entities. In our model LitKGE, literal-based features of entities are considered as a source
of semantics for the task of KG completion, specifically LP. However, the feature generation procedure of LitKGE
is different from that of Literal2Feature. In Literal2Feature, a graph traversal algorithm (either Breadth-First Search
or Random Walk) is applied directly to the input RDF graph in order to gather literals for each entity and consider
them as a feature vector for the given entity. Then, given the generated path, it keeps only the properties and
the literal value, ignoring the entities appearing between the starting entity and the literal node. Differently from
Literal2Feature, in this work, LitKGE proposes a novel algorithm named WeiDNeR_extended which generates
a weighted and directed relation-relation/attribute network, which is used as an input to a random walk algorithm to
generate property paths. Then these property paths are used to collect literals to leverage them as features of entities.
The WeiDNeR_extended algorithm enables LitKGE to efficiently generate more sound features by using the
weights in the resulting network graph.

3. Preliminaries

In this section, the formal definition of the LP problem is given. Moreover, an overview of the LiteralE KGE
model is provided along with a description of the scoring function of the base models DistMult and ComplEx.

3.1. Problem Definition

LP in KGs aims at predicting new relations between entities leveraging the existing triples/facts for training.
Formally, let G = {E ,R,D,L, T } be a KG where E = {e1, e2, ..., eNd} representing the set of entities in G,
R = {r1, r2, ..., rNr} denotes the set of relations connecting two entities, D = {d1, d2, ..., dNd} as a set of attributes
(a.k.a data relations) connecting entities to their corresponding literals, and L is the set of literal values. The triples
in G are represented as T ⊆ ((E ×E ×R)∪ (E ×L×D)). Given G, the task of LP can be formulated by a function
Φ : E × E × R → R which assigns a score to each triple (ei, e j, rk) ∈ E × E × R, where a higher score indicates
that the triple is more likely to be valid.

3.2. LiteralE

LiteralE incorporates literals into SOTA embedding methods designed for LP such as DistMult and ComplEx. As
per the experimental results presented in a survey conducted on KGE models with numeric literals [11], LiteralE
outperforms all other KGE models which use literals like KBLN, MTKGNN, and TransEA. Given a base model
like DistMult with a scoring function f = fdistmult shown in Equation 1 or ComplEx with f = fcomplex in Equation 2,
LiteralE modifies f by replacing the original entity vectors ei in f with literal enriched representations elit

i using a
flexible and learnable GRU-based transformation function g.

fdistmult(ei, e j, rk) = eT
i diag(rk)e j (1)

fcomplex(ei, e j, rk) = Re(⟨ei, e j, rk⟩)
= ⟨Re(ei),Re(e j),Re(rk)⟩
+⟨Im(ei), Im(e j),Re(rk)⟩
+⟨Re(ei), Im(e j), Im(rk)⟩
−⟨Im(ei),Re(e j), Im(rk)⟩

(2)

The function g is shown in Equation 3 which takes as an input ei and its corresponding literal vector li and maps
them to a new vector. Note that li is the i-th row of a literal matrix L ∈ RNe×Nd as the literal vector of the i-th entity.
The entry Lik in L is the k-th literal value of the i-th entity if an attributive triple with the i-th entity and the k-th data
relation (i.e., attribute) exists in the KG, and zero otherwise.
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Fig. 2. Feature generation pipeline: given a KG as input, it generates a feature matrix containing numerical features for the entities in the KG.

g : RH × RNd → RH ,
e, l 7→ z⊙ h + (1− z)⊙ e, (3)

where

z : σ(WT
zee + WT

zll + b), (4)

and

h = h(WT
h [e, l]). (5)

Note that Wze ∈ RH×H ,Wzl ∈ RNd×H ,b ∈ RH , and Wh ∈ RH+Nd×H are the parameters of g, σ is the sigmoid
function, ⊙ denotes the element-wise multiplication, and h is a component-wise nonlinearity. The scoring function
f (ei, e j, rk) would be replaced with f (g(ei, li), g(e j, l j), rk).

4. LitKGE

In this Section, the proposed approach LitKGE is presented in detail. It consists of two major components, i.e.,
i) Generating numeric features and ii) Incorporating numeric features into KGE models. These components are
discussed in the subsequent sections.

4.1. Generating features

As discussed in Section 1 given a KG, implicit features of entities could be made explicit by traversing the KG
using property paths. Hence, LitKGE generates such paths which lead to literal values to create features for entities.
The overall phases in the feature generation process are depicted in Figure 2.

The phases are described as follows:

– Input graph: A KG which contains entity nodes, literal nodes, and properties (relations and attributes) is
taken as input to generate numerical features.
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– WeiDNeR-Extended: A novel algorithm named WeiDNeR-Extended is introduced which is an extension of
the WeiDNeR algorithm developed in RAILD [10]. There are two major differences between WeiDNeR and
WeiDNeR-Extended: i) WeiDNeR is designed based on the assumption that given a KG G = (R, E , T ⊆
E × R × E), r1, r2 ∈ R and T1 ⊆ (T ∩ (E × r1 × E)), T2 ⊆ (T ∩ (E × r2 × E)), the higher the number of
common entities between T1 and T2, the higher the probability that r1 and r2 could be semantically similar. In
WeiDNeR-Extended, the assumption is formulated as Given a KG G = (R,A, E ,L, TR ⊆ E × R × E , TA ⊆
E×A×L), p1 ∈ R, p2 ∈ R∪A and T1 ⊆ (TR∩(E× p1×E)), T2 ⊆ ((TR∪TA)∩(E× p2×E|L)), the higher
the number of matches between tail entities in T1 and head entities in T2, the higher the probability that p1
and p2 appear close to each other in the original KG. This restriction to matching only the tail of T1 and the
head of T2 is performed in order to keep only outgoing links when generating property paths. ii) As described
in i), WeiDNeR generates a relation-relation network taking only relational triples as inputs, i.e., excluding
literals, hence, there are no attributes in the resulting network. However, in WeiDNeR-Extended, the network
is intended to contain relation-relation as well as relation-attribute connections. Algorithm 1 describes the
steps followed by WeiDNeR-Extended to generate the network.
Algorithm Description: Given two properties pi and p j,

* if pi and p j are different relations connecting entities, it computes the weight Weight<pi,p j> by counting
the number of pair of triples where the relation in the first triple is pi and in the second is p j and the tail
entity in the first triple is the same as the head entity in the second triple. If Weight<pi,p j> is greater than
zero, then pi and p j are considered as nodes in the output network, and a directed link from pi to p j is
created with the computed weight. Weight<p j,pi> is computed similarly and if it is greater than 0, then a
directed link from p j to pi is created and assigned the computed weight (i.e., refer to lines 4- 9).

* if pi is a relation connecting entities and p j denotes an attribute connecting entity to a literal node, the
weight Weight<pi,p j> by counting the number of pair of triples where the relation in the first triple (a
relational triple) is pi and in the second triple (an attributive triple) is p j and the tail entity in the first
triple is the same as the head entity in the second triple. If Weight<pi,p j> is greater than zero, then pi

and p j are considered as nodes in the output network, and a directed link from pi to p j is created with
the computed weight. The same analogy applies if pi is an attribute and p j is a relation so as to decide
whether there should be a link from p j to pi and to compute the weight Weight<p j,pi> (i.e., refer to lines
11- 17).

* if pi and p j are relations and they are exactly the same, then the weight Weight<pi,pi> by counting the
number of pair of triples where the relation in the first triple (a relational triple) is pi and in the second
triple (an attributive triple) is p j and the tail entity in the first triple is the same as the head entity in the
second triple. If Weight<pi,pi> is greater than zero, then pi is considered as a node in the output network,
and a link from pi to itself (i.e., a loop)is created with the computed weight.

Note that the motivation behind creating a relation-relation/attribute network (i.e., proposing the WeiDNeR-
Extended algorithm) is to make sure that within a property path that is generated as a feature, the properties
are semantically related. For instance considering the example relation-relation/attribute graph in the feature
generation pipeline in Figure 2, when the random walk algorithm is applied to this graph and takes r3 as a
starting node, it selects r1 as the next node instead of r6 because the weight on the link from r3 to r1 (i.e., 10)
is bigger than the weight from r3 to r6 (i.e., 1). Moreover, having the weights in such relation-relation/attribute
networks allows the generation of less-sparse features. This approach is novel due to the fact that none of the
existing KGE methods utilized such a technique to generate features for entities.

– Random walk: The 2nd order-based biased random walk approach used in Node2Vec[12] is applied to gen-
erate network neighborhoods for nodes in the WeiDNeR-Extended network.

– Extracting literals: The generated walks/property paths with the random walk graph traversal are used as
templates to obtain literals for entities in the input KG. Given an entity, some property paths could have
multiple values and in such cases, their average is taken. For example, taking the graph in Figure 1 as the input
KG and author_age as a property path generated with a random walk, for Paper_B there would be two possible
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literal values 23 and 25 through the entities Marry and Daniel respectively (i.e., <Paper_B, author_age, 23>
and <Paper_B, author_age, 25>) and taking the average would result in <Paper_B, author_age, 24>.

– Filtering: In this step, those property_paths/features which have values for only one entity are removed. This
is done in order to avoid having features that do not provide much semantics to help compare entities but
rather make the feature matrix sparse.

– Output: The resulting feature matrix F ∈ RNe×N f contains the generated numerical features for the entities
in the input KG, where Ne and N f denote the number of entities and the number of features respectively. Note
that each entry Fik contains the k-th feature value of the i-th entity if a feature value is generated for the i-th
entity and the k-th feature using the feature generation pipeline, and zero otherwise.

Algorithm 1: WeiDNeR-Extended - An algorithm to generate a directed and weighted relation-
relation/attribute network.

Data: T ← Relational and Attributive Triples in KG
Data: R← Properties in Relational Triples (i.e., Relations)
Data: D← Properties in Attributive Triples (i.e., Attributes)
Result: Nrel

1 for each pair of properties ⟨pi, p j⟩ do
2 if pi ̸= p j then
3 if pi, p j ∈ R then
4 Weight⟨pi,p j⟩ ←

∣∣{(⟨h1, pi, t1⟩, ⟨h2, p j, t2⟩) : ⟨h1, pi, t1⟩ ∈ T, ⟨h2, p j, t2⟩ ∈ T, t1 = h2}
∣∣;

5 Weight⟨p j,pi⟩ ←
∣∣{(⟨h1, pi, t1⟩, ⟨h2, p j, t2⟩) : ⟨h1, pi, t1⟩ ∈ T, ⟨h2, p j, t2⟩ ∈ T, h1 = t2}

∣∣;
6 if Weight⟨pi,p j⟩ > 0 then
7 Nrel ← Nrel

⋃
{⟨pi, p j,Weight⟨pi,p j⟩⟩};

8 if Weight⟨p j,pi⟩ > 0 then
9 Nrel ← Nrel

⋃
{⟨p j, pi,Weight⟨pi,p j⟩⟩};

10 else if pi ∈ R & p j ∈ D then
11 Weight⟨pi,p j⟩ ←

∣∣{(⟨h1, pi, t1⟩, ⟨h2, p j, l⟩) : ⟨h1, pi, t1⟩ ∈ T, ⟨h2, p j, l⟩ ∈ T, t1 = h2}
∣∣;

12 if Weight⟨pi,p j⟩ > 0 then
13 Nrel ← Nrel

⋃
{⟨pi, p j,Weight⟨pi,p j⟩⟩};

14 else
15 Weight⟨p j,pi⟩ ←

∣∣{(⟨h1, p j, t1⟩, ⟨h2, pi, l⟩) : ⟨h1, p j, t1⟩ ∈ T, ⟨h2, pi, l⟩ ∈ T, t1 = h2}
∣∣;

16 if Weight⟨p j,pi⟩ > 0 then
17 Nrel ← Nrel

⋃
{⟨p j, pi,Weight⟨p j,pi⟩⟩};

18 else
19 if pi ∈ R then
20 Weight⟨pi,pi⟩ ←

∣∣{(⟨h1, pi, t1⟩, ⟨h2, p j, t2⟩) : ⟨h1, pi, t1⟩ ∈ T, ⟨h2, p j, t2⟩ ∈ T, t1 = h2, (h1 ̸=
t1 ∨ h1 ̸= t2)}

∣∣;
21 if Weight⟨pi,pi⟩ > 0 then
22 Nrel ← Nrel

⋃
{pi, pi,Weight⟨pi,pi⟩};

4.2. Incorporating features into KGE models

Once the features are generated using the procedure discussed in Section 4.1, they can be utilized while learning
KGEs. This can be achieved by incorporating them in any KGE model which utilizes literals. For instance, TransEA
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and LiteralE are among those KGE models which can be improved using the LitKGE approach. TransEA is an
extension of TransE model where an attribute embedding component is integrated into TransE. The attributive
embedding component uses all attributive triples with numeric literals as input and applies a linear regression model
to learn embeddings of entities and attributes. One way to improve TransEA with LitKGE would be to use the
generated features in LitKGE and treat them as attributes and predict the values using the attributive embedding
component. On the other hand, LiteralE is a universal KGE model which incorporates literals to the standard KGE
models such as DistMult and ComplEx. In this work, LiteralE is selected as a base model to improve it with LitKGE
due to the fact that it performs better than TransEA and other KGE models which use literals as presented in [11].
In addition to its performance, LiteralE is a universal model, i.e., as mentioned above it can be applied to many
standard models, which implies that applying LitKGE to LiteralE is in turn applying it to the base scoring models.

Fig. 3. Overview of LitKGE as an improvement over LiteralE model. LitKGE takes as input the embedding of the entities and the concatenation
of their corresponding literal vectors li and feature vector fi as input and combines them via a learnable function g (i.e., gl f in Equation 6). Then,
it modifies the base scoring function f with the joint embedding obtained using g.

The modification to the LiteralE architecture with LitKGE is depicted in Figure 3. Let L ∈ RNe×Nd be a matrix
representing literals and F ∈ RNe×N f be a newly introduced feature matrix generated using the procedure presented
in Section 4.1. The final new matrix would be a combination of L and F as LF = [L; F], LF ∈ RNe×Nd+N f Then, the
mapping function used in LiteralE (i.e., g in Equation 3) is modified as gl f in Equation 6.

gl f : RH × RNd+N f → RH ,
e, lF 7→ z⊙ h + (1− z)⊙ e, (6)

where ⊙ is the pointwise multiplication and

z : σ(WT
zee + WT

zl lF + b), (7)



GA. Gesese et al. / LitKGE: Improving numeric LITerals based KGE models 9

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

and

h = h(WT
h [e, lF]). (8)

Note that Wze ∈ RH×H ,Wzl ∈ RNd+N f ×H , b ∈ RH , and Wh ∈ RH+Nd+N f ×H are the parameters of g, σ is the
sigmoid function, ⊙ denotes the element-wise multiplication, and h is a component-wise nonlinearity. The scoring
function f (ei, e j, rk) would be replaced with f (gl f (ei, lFi), gl f (e j, lF j), rk). The scoring function f , without loss of
generality, could be a scoring function from any latent feature model such as DistMult and ComplEx shown in
Equation 1 and Equation 2 respectively.

4.3. Computational Complexity

Note that given a KG, the numerical features of entities, as discussed in Section 4.1, are pre-computed, and hence,
the major part of the computational cost of LitKGE comes from training the model depicted in the architecture in
Figure 3. The cost can be computed in terms of the number of parameters in the model. LitKGE, similar to LiteraLE,
introduces some overhead in the number of parameters as compared to the base model. The overhead is the number
of parameters in the function gl f in Equation 6. Specifically, there are 2H2+2H(Nd+N f )+H additional parameters
corresponding to the dimensionality of Wh, Wze, Wzl, and b in Equation 7 and 8. Hence, given gl f and H, the number
of additional parameters of LitKGE grows in O(Nd + N f ), that is, linear to the number of attributes (a.k.a data
relations) and features in the KG.

5. Experiments

In this section, the details of experimentation including the datasets, the experimentation settings, and the results
are discussed. Our implementation and the datasets are made publicly available through GitHub2.

5.1. Datasets

Three standard datasets, namely, FB15K-237, YAGO3-10, and LitWD48K have been used to evaluate the perfor-
mance of the proposed LitKGE LP approach. FB15K [4] is a subset of Freebase [3] describing facts about movies,
actors, awards, sports, and sports teams. FB15K-237 is created by removing the inverse relations from FB15K [4].
YAGO3-10 is extracted from the YAGO3 knowledge graph, which mostly consists of triples describing people such
as citizenship, gender, and profession. For YAGO3-10, the numerical literals published in YAGO3-10-plus [19] and
for FB15K-237 the numerical literals provided by LiteralE [14] are used for the experiments in this work. Dif-
ferently from FB15K-237 and YAGO3-10, LitWD48K is a recent benchmark dataset extracted from Wikidata by
explicitly designing it to contain literals so as to evaluate the performances of LP models. The entities of the dataset
LitWD48K contain People, Geography, Entertainment, Transportation, Sport, Travel, Business, and Research. The
relations are object properties connecting the entities with each other whereas the attributes are datatype properties
connecting entities to numerical literals. The statistics of these datasets are given in Table 1.

5.2. Experiment Setting

Note that the experiments are conducted using the scoring functions from two different base models DistMult
and ComplEx and the LitKGE models corresponding to these functions are referred to as DistMult-LitKGE and
ComplEx-LitKGE. In order to train the models, the strategy from LiteralE[14] is adopted. The hyperparameters
used in our experiments across all datasets are: learning rate 0.001, batch size 128, embedding size 100, embedding
dropout probability 0.2, and label smoothing 0.1. DistMult-LitKGE is trained for a maximum of 200 epochs on
FB15K-23 and YAG03-10 datasets and 300 epochs on LitWD48K whereas ComplEX-LitKGE is trained for a
maximum of 100 epochs on all datasets. More details on the hyper-parameters for the feature generation pipeline
are provided in the publicly accessible resources on GitHub.

2https://github.com/GenetAsefa/LitKGE

https://github.com/GenetAsefa/LitKGE
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Table 1
The statistics of the datasets used in the experiments in this paper.

FB15K-237 YAGO3-10 LitWD48K
#Entities 14,541 123,182 47,998

#Relations 237 37 257
#Attributes 121 5 297

#Relational Triples 310,116 1,089,040 336,745
#Numerical Attrib. Triples 70,257 111,406 324,418

#Train 272,115 1,079,040 303,117
#Test 17,535 5,000 16,838
#Valid 20,466 5,000 16,838

5.3. Training

The same training procedure used in LiteralE which is known as 1-N scoring approach is adopted to train the
LitKGE models. For every triple (ei, e j, ek) in the KG, the score for (ei, e

′

j, ek), ∀e
′ ∈ E is computed by applying

the extended scoring function f . Then, the sigmoid function is applied to the resulting score (i.e., p = σ ◦ f ),
in order to interpret the result as the probability of the existence of a given triple. Finally, the probability vector
P ∈ [0, 1]Ne collects the probabilities computed w.r.t. all e

′ ∈ E. Finally, the training is performed by minimizing
the binary cross-entropy loss between p and the ground truth labels y ∈ 0, 1Ne which indicates the existence of triples
(ei, e

′

j, ek), ∀e
′ ∈ E. Given px and yx as the predicted probability and the given truth value for the x-th element in

the set {(ei, e
′

j, ek), e
′ ∈ E} respectively, the loss function is defined as shown in Equation 9 and optimized using

the Adam [13] optimizer.

L(p, y) = − 1

Ne

Ne∑
x=1

(yx log(px) + (1− yx) log(1− px)) (9)

5.4. Evaluation

In order to evaluate the performance of the proposed approach on the LP task, the standard setup in other similar
studies including LiteralE is followed. For each triple (ei, e j, rk) appearing in the test set, a set of corrupted/negative
triples by either replacing the head entity ei or the tail entity e j with any other entity e

′ ∈ E . The scores are computed
for the corrupted triples as well as the true triple. Then, all triples with respect to their scores are ranked and evaluated
using the standard evaluation metrics: Mean Reciprocal Rank (MRR), Hits@1, Hits@3, and Hits@10.

5.5. Results and Discussion

The statistics of the generated features for the datasets FB15K-237, YAG03-10, and LitWD48K with the proposed
pipeline in this work, are presented in Table 2. Moreover, the results of the LP experiments conducted on these
datasets are provided in Table 3. Overall, as these results indicate, the model LitKGE outperforms all the other
models across all datasets with respect to all metrics using the DistMult scoring function. The results are discussed
in detail as follows:

LitKGE vs. Base models (DistMult and ComplEx): DistMult-LitKGE outperforms DistMult on all three datasets
with respect to all metrics. Specifically, applying LitKGE on top of DistMult improves the MRR score by
1.18%, 11.87%, and 10.38% on LitWD48K, FB15K-237, and YAGO3-10 datasets, respectively. Similarly, apply-
ing LitKGE on top of ComplEx improves the MRR score with 1.87% and 3.97%, respectively on LitWD48K
and FB15K-237. It can be noted that applying ComplEx-LitKGE does not outperform ComplEx on YAGO3-10.
This might be attributed to the fact that the ComplEx base model already achieves higher performance than Dist-
Mult. Note that this is also the case with ComplEx-LiteralE, i.e., ComplEx-LiteralE does not improve ComplEx on
YAGO3-10.
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Table 2
Analysis of the features generated for the entities in the three datasets. #feat denotes the number of unique features and #feat-entries is the number
of entries with these features for the entities in the corresponding dataset. #feat-max, #feat-min, and #feat-median represent the maximum,
minimum, and median of the occurrences of the features.

FB15K-237 YAG03-10 LitWD48K
#feat 11 5 828

#feat-entries 2,337 10,151 192,035
#feat-max 1,127 5,072 15,289
#feat-min 8 347 2

#feat-median 170 1,403 12

Table 3
LP results on FB15K-237, YAGO3-10, and LitWD48K. The best values are highlighted in bold text.

FB15K-237 YAGO3-10 LitWD48K
MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10

DistMult 0.282 0.203 0.309 0.438 0.466 0.377 0.514 0.653 0.336 0.264 0.360 0.480
ComplEx 0.290 0.212 0.317 0.445 0.493 0.411 0.536 0.649 0.315 0.248 0.341 0.442

KBLN 0.301 0.215 0.333 0.468 0.487 0.405 0.531 0.642 - - - -
MTKGNN 0.285 0.204 0.312 0.445 0.481 0.398 0.527 0.634 - - - -

DistMult-LiteralE 0.317 0.232 0.348 0.483 0.479 0.4 0.525 0.627 0.331 0.258 0.352 0.480
ComplEx-LiteralE 0.305 0.222 0.336 0.466 0.485 0.412 0.527 0.618 0.317 0.238 0.343 0.475

DistMult-LitKGE 0.320 0.234 0.354 0.488 0.520 0.446 0.563 0.653 0.340 0.266 0.363 0.491
ComplEx-LitKGE 0.302 0.219 0.333 0.465 0.481 0.406 0.522 0.615 0.321 0.243 0.344 0.480

LitKGE vs. LiteralE: When comparing LitKGE with LiteralE, it is seen that LitKGE outperforms LiteralE
across all three datasets with the DistMult scoring function with respect to all metrics. DistMult-LitKGE improves
DistMult-LiteralE’s MRR score by 2.56%, 0.94%, and 7.88% on LitWD48K, FB15K-237, and YAGO3-10 datasets,
respectively. Similarly, applying LitKGE on top of ComplEx improves the MRR score by 1.25% on LitWD48K
dataset. As it is mentioned above in the context of LitKGE vs. base models, the reason for ComplEx outperforming
ComplEx-LitKGE on YAGO3-10 might be attributed to the already higher performance of the ComplEx base model
over DistMult. The same reasoning can be applied to clarify why ComplEx-LitKGE does not achieve better results
than ComplEx-LiteralE on FB15K-237 and YAGO3-10 datasets; instead, it delivers comparable performance. An-
other factor contributing to this might be the utilization of hyperparameter tuning, which was conducted in [6] and
also adopted in this work and LiteralE [14] for carrying out the experiments.

Impact of the feature matrix: As shown in Table 2, the LitWD48K dataset has many features (i.e., 828) as com-
pared to the other datasets, and also it has as large as 192,035 entries which makes the resulting feature matrix less
sparse. This contributes to the fact that LitKGE outperforms all the SOTA models on this dataset. Note that, unlike
LitWD48K, FB15K-237 and YAGO3-10 are not created specifically for the evaluation of KGE models with literals,
i.e., not all of their entities have literals. However, these datasets could benefit from the feature generation approach
in LitKGE since LitKGE also generates features for those entities which do not have any literals associated with
them. This gain is observed in the LP results obtained on these datasets with LitKGE where LitKGE outperforms
the SOTA models.

Impact of filtering while generating features: As discussed in Section 4.1, those features which have values
for only one entity are filtered out. This is performed in order to make the feature matrix less sparse. An abla-
tion study is conducted on the LitWD48K dataset with the DistMult-LitKGE model in order to show the impact
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of performing the filtering step in the feature generation pipeline in Figure 2. As the results in Table 4 indicate,
DistMult-LitKGE outperforms DistMult−LitKGEun f iltered with respect to all metrics, mainly with hits@10 metrics
which is improved by 3.46%. This improvement is attributed to the filtering step in the pipeline during which 269
property_paths/features occurring only once are removed. This proves that including filtering in the pipeline plays
its role in reducing sparsity.

Table 4
Comparison of the LP results on LitWD48K dataset with and without applying the filtering step in the feature generation pipeline. DistMult-
LitKGE is with filtering whereas DistMult-LitKGEun f iltered is when filtering is not used.

MRR Hits@1 Hits@3 Hits@10
DistMult-LitKGE 0.340 0.266 0.363 0.491

DistMult-LitKGEun f iltered 0.334 0.263 0.357 0.474

Experiment with a different scoring function In this work, as shown above, DistMult and ComplEx are chosen
as scoring functions for LitKGE based on the following considerations. Firstly, DistMult and ComplEx are widely
adopted and have been demonstrated to be effective latent feature methods, as reported in [14]. By utilizing these
scoring functions, it is possible to compare the results obtained with LitKGE against the SoTA models such as
LiteralE-DistMult and LiteralE-ComplEX. Secondly, it is convenient to analyze the results obtained using datasets
with different characteristics, such as comparing the symmetric and inverse handling capabilities of these models
on various datasets. Thirdly, as discussed in [9] where a comparison of datasets for KGE with literals is provided,
FB15K-237 is better than YAGO3-10 and FB15K to evaluate KGE models with literals. Besides, according to the
results presented in [14], the DistMult and ComplEx scoring functions perform better than ConvE on the FB15K-237
dataset. Therefore, DistMult and ComplEx are chosen in this work to evaluate LitKGE.

Table 5
Comparison of LitKGE with ConvE scoring function against the SOTA models on the Yago3-10 dataset

MRR Hits@1 Hits@3 Hits@10
ConvE-LiteralE 0.525 0.448 0.572 0.659
ConvE-LitKGE 0.540 0.467 0.583 0.671

However, it is very important to note that the methods DistMult and ComplEx are a representative selection and
LitKGE can also be adapted to alternative latent feature methods, such as ConvE. In order to support this argument,
an additional experiment is conducted with the ConvE scoring function on YAGO3-10 and the results are presented
in Table 5. Note that YAGO3-10 dataset is selected due to the fact that ConvE performs best only on this dataset
as compared to the other datasets with the current approaches [14]. The results presented in Table 5 indicate that
LitKGE with the ConvE scoring function outperforms the current best-performing model ConvE-LiteralE proposed
in [14].

Limitations The primary constraint of this study lies in its reliance on a Knowledge Graph (KG) that contains
some numerical literals associated with its entities. In cases where the KG lacks such numerical literals, the feature
generation method proposed in this work is not applicable for generating numerical features for entities.

6. Conclusion and Future Work

This study presents a novel approach named LitKGE which is designed to improve the way KGE models utilize
literals to perform LP on KGs. Its main focus is on making implicit information explicit so that KGE models could
leverage it. LitKGE is tested on LitWD48K, FB15K-237, and YAGO3-10 datasets and it outperforms all SOTA
models across all these datasets. The following are possible future works in this direction:
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– Exploring schema definitions and constraints of properties to deal with those KGs with possible duplicate
paths and to handle sparsity in the feature matrix.

– Extending LitKGE by fusing the relational triples and the numeric literals with short textual literals such as
labels and aliases and also long textual literals such as the description of entities.

– Studying explainability of the LitKGE model.
– Exploring the advantages of applying the proposed feature generation approach for the construction of knowl-

edge graphs.
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