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Abstract. The symbolic and connectionist AI are two main routes in the last two generations of AI. Nowadays, researchers have
gradually realized that these two routes do not conflict in principle, but can and should integrate and help each other. In this pa-
per, we take knowledge-intensive complex reasoning task as an example to explore the integration of symbolic and connectionist
AI. In particular, we design a general neural-symbolic architecture for this task, which is composed of four main components:
multiple knowledge sources, knowledge manipulator, reasoning planner, and reasoning conductor. We also introduce existing
techniques that can be used to implement each component, and summarize their advantages and potential directions for enhance-
ment in building a neural-symbolic system for knowledge-intensive complex reasoning tasks.

Keywords: Knowledge-intensive Complex Reasoning, Neural-symbolic Framework, Large Language Models, Knowledge Bases

1. Introduction

Artificial intelligence (AI) aims at creating machine intelligence that can perceive, learn, reason, learn, and inter-
act with their environment in a way that simulates human cognitive abilities. There are two main paradigms adopted
in AI in order to achieve this: (1) the symbolic, and (2) the connectionist AI.

The first generation of AI is dominated by the symbolic approach, which believes that a physical symbol system
has the necessary and sufficient means for general intelligent action [1]. It inherits the idea of mathematical logic
that the physical world could be represented by symbolic systems, and views intelligence as a process of symbolic
manipulation and reasoning following logical rules. Its contemporary successor is knowledge engineering, which
takes knowledge accumulation, reuse, and knowledge-intensive complex question answering as its core issues. The
second generation of AI is dominated by the connectionist approach. The ideological basis of connectionist AI is
that the human brain is physically based on a network of interconnected neurons, and it is possible to create AI
by computerizing neural networks that mimic those of living beings. Although the connectionist AI encountered
many setbacks in the early stage, in recent years, on the basis of continuously improved deep learning models such
as convolutional neural networks (CNN) [2], recurrent neural networks (RNN) [3] and Transformers [4], it has
reached a new high level. Recently, large language models (LLMs) such as ChatGPT (GPT 3.5) and GPT-4 [5] have
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demonstrated astonishing abilities on a variety of domains and tasks, including abstraction, comprehension, vision,
coding, mathematics, medicine, law, understanding of human motives and emotions, and more [6]. It is widely
recognized by academics and the industry that LLMs marks a new level of intelligence in AI systems, and can be
regarded as the prototype of artificial general intelligence (AGI). LLMs are considered as a landmark success in the
connectionist line of AI research.

Traditionally, the symbolic and connectionist approaches have been viewed as competing and mutually rein-
forcing. In recent years, there has been a widespread rethinking of the relationship between these two classical
approaches. Drawing on the analogy from Daniel Kahneman’s "Thinking, Fast and Slow" [7] where System 1 is
likened to fast, intuitive perception (akin to neural processes) and System 2 to slow, deliberate cognition (similar
to symbolic reasoning), the integration of neural and symbolic approaches, akin to the harmonious cooperation be-
tween System 1 and System 2, holds significant promise for advancing AI. Because on one hand, neural approaches,
paralleling System 1, are adept at processing vast amounts of sensory data and identifying patterns within this data.
However, neural methods have notable limitations. They often operate as “black boxes”, making it challenging to
interpret how decisions are made or to trace the reasoning process. This lack of transparency can be problematic in
applications where understanding the decision-making process is crucial, such as in healthcare or criminal justice.
Additionally, neural networks require large amounts of data to learn effectively, and they can be prone to overfit-
ting, where they perform well on training data but poorly on unseen data. They also struggle with tasks that require
complex logical reasoning or handling of abstract concepts, where a clear, structured approach is necessary.

On the other hand, symbolic approaches, mirroring System 2, excel in tasks that demand explicit knowledge rep-
resentation and rule-based reasoning. The clear, rule-based nature of symbolic AI allows for a level of transparency
and explainability that neural methods often lack. However, symbolic systems can be rigid, relying heavily on prede-
fined rules and knowledge bases, which makes them less adaptable to new or unforeseen situations. Furthermore, the
development of symbolic systems can be labor-intensive, requiring extensive domain expertise to encode knowledge
and rules accurately. Therefore, by combining the intuitive pattern recognition capabilities of neural methods with
the structured reasoning abilities of symbolic systems, integrated neural-symbolic models can leverage the strengths
of both paradigms. Such models are capable of not only processing sensory data efficiently but also applying logical
reasoning and abstract thinking to make sense of the data in a more human-like manner [8]. Zhang Bo also points
out that the third-generation AI method should be “double-wheel-driven by data and knowledge”, so as to realize
explainable, robust, safe and reliable AI systems [9]. Nowadays, researchers have gradually realized that these two
routes do not conflict in principle, but can and should integrate and help each other.

Knowledge Base Text LLMs’ Parameters

Mount Aconcagua is the highest mountain in
South America, with an elevation of 6,961 meters,
and is also the highest mountain outside of Asia,
as well as the highest peak in the Western and
Southern Hemispheres. It belongs to the Andes
Mountains in the western part of South America
and is located in Mendoza Province of Argentina,
112 kilometers northwest of Mendoza, the capital
of the province, and 15 kilometers from the
Chilean border, and is a glacial mountain system.
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Fig. 1. Knowledge can be stored in different sources, such as structured knowledge bases, unstructured text, and LLMs’ parameters. Color blue
denotes concepts, orange denotes entities, green denotes the attributes of entities, and red denotes relations among entities and concepts.

In this paper, we will explore the integration of symbolic and connectionist AI to address knowledge-intensive
tasks [10], which are in the form of Question Answering (QA) and demand advanced knowledge-intensive complex
reasoning capabilities that extend beyond mere pattern recognition to encompass a deep understanding of enti-
ties and their relationships within the world. Specifically, in knowledge-intensive complex question answering, a
complex question is given to the intelligent system, and a concise answer for the question is expected. It requires
deep understanding of natural language text (including the question and knowledge corpora), and involves vari-
ous reasoning capabilities such as multi-hop inference, attribute comparison, and set operation [11, 12]. Here, the
knowledge can be stored in different sources, such as structured knowledge bases, unstructured text corpora, the
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parametric knowledge in LLMs’ parameters, images, etc., as shown in Figure 1. Actually, as John McCarthy states,
the 1976 memorandum [13] is of modern interest. In this article, he introduces a story from New York Times, writes
22 questions for it, and points out that an intelligent person or program should be able to answer the questions,
which requires deep understanding and reasoning ability. He also gives guidelines for knowledge-intensive com-
plex question answering. There are two basic elements: 1) A formalism capable of expressing the assertions of the
sentences free from dependence on the grammar of the English language, which can be called artificial natural lan-
guage—ANL; 2) A data structure for expressing the facts (apart from expressing the sentences). Certain programs
can be applied to the data structures.

Inspired by the proposal of John McCarthy, we design our general neural-symbolic architecture for knowledge-
intensive complex question answering, which will be introduced in Section 2. Specifically, the framework is com-
posed of four main construction blocks—knowledge-oriented data manager, knowledge manipulator, reasoning
planner, and reasoning conductor. These modules draw advantages from both neural and symbolic methodologies,
and take the responsibility of knowledge-intensive complex answering in different levels. The overall architecture
also integrates human in the loop, to progressively accomplish the targeted tasks and optimize the overall system.
Next, we will present the detailed implementations of the four modules in Section 3, by introducing the related
works. Finally, we will look into the future and conclude the paper in Section 4.

2. Overall Architecture Design

Neural-Symbolic Architecture for Complex Reasoning with Human in the Loop

Knowledge-oriented 
Data Manager

Reasoning Conductor Reasoning 
Planner

Knowledge Manipulator

Fig. 2. The proposed neural-symbolic framework to solve knowledge-intensive complex reasoning task. We use solid arrows to indicate calling
and access relationship between components and dashed arrorws to indicate the interaction between human and each component. The basis of
the whole architecture is the knowledge-oriented data manager. Knowledge manipulator performs knowledge operations on the knowledge data.
Reasoning planner produces candidate reasoning path by decomposing complex reasoning tasks into assembled knowledge manipulation primi-
tives. Reasoning conductor decides the optimal reasoning path, select knowledge manipulation implementations, and execute on the knowledge
manager to obtain the answer. All four components can be implemented with neural methods and symbolic methods or a combination of the
two. Our architecture also incorporates human in the loop to update knowledge sources, fix and optimize reasoning plans, and converse with the
system to perform multiple-step reasoning tasks.

With the rapid development of large-scale pre-trained models in many different domains [5, 14], neural models
show great promise in understanding complex semantics and generalizing to unseen data and tasks. They not only
encapsulate tremendous world knowledge, as recognized as parametric knowledge [15], but also show excellent
skills in understanding semantics, as demonstrated in solving tasks such as semantic parsing [16] and planning [17].
However, neural methods fail to reliably reason with pre-defined schemata and generate appeared to be correct but
actually wrong answers, which is recognized as notorious hallucination issue. Thus, it is necessary to find a way
to drive neuron methods to function without hallucination. Luckily, symbols are able to express explicit constraints
and knowledge guidance. Although they are less superior than neural methods in generalization, they tend to be
more reliable in solving strict knowledge-intensive complex reasoning tasks. Thus, combining the advantages from
both the neural and the symbolic perspectives is a promising direction to realize intelligence.
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Under such belief, previous researchers developed frameworks that integrate both neuron and symbolic ap-
proaches. However, within these existing frameworks, either the neural or the symbolic method predominates, often
relegating the other to a secondary role. For example, in framework dominated by neural approaches, symbolic
methods are merely utilized as regularization terms for the loss function [18]. Conversely, in frameworks where
symbolic methods take precedence, neural approaches are relegated to serving merely as embedding modules for
knowledge representation [19]. In light of this, we express a desire for a framework that unifies neural-symbolic
integration, thereby unleashing the potential of both methodologies simultaneously.

We propose a neuro-symbolic framework that mimics the dual-process of human mind [20]. Neural models, as
represented by large language models (LLMs), convert rough natural language intentions into well-defined sym-
bols [13, 21]. They resemble system 1 to perform associative thinking. The reasoning is performed with the aid of
symbolic methods, which resembles system 2 to perform logical thinking.

We propose to implement such framework as the following architecture, an initiative neural-symbolic realiza-
tion to solve knowledge-intensive complex reasoning tasks, which is demonstrated in Figure 2. The architecture is
composed of four main construction blocks—knowledge-oriented data manager, knowledge manipulator, reasoning
planner, and reasoning conductor. These components carry distinct responsibilities, drawing advantages from both
neural and symbolic methodologies. Moreover, the proposed framework integrates human involvement in the loop,
to progressively accomplish the targeted tasks and optimize the overall system. In the following of this section, we
specify the distinct responsibilities of each module and discuss how human contribute to and enhance the overall
framework in the loop. We will use question “Who is taller, China’s most famous basketball player or the basketball
player Lebron James?” as a running example to show how our architecture solves the question.

2.1. Knowledge-oriented Data Manager

Knowledge-oriented data manager is the foundation of the overall system. It aggregates knowledge from multiple
sources, including not only traditional knowledge bases [22, 23], but also information scattered in raw formats such
as plain text [24, 25], model parameters [26], images [27], and tables [28].

To facilitate unified knowledge manipulation, the manager provide knowledge information in a coherent symbolic
representation. A typical semantic representation system comprises five core knowledge elements: (1) Entities
are unique object in the real world; (2) Concepts are sets of entities with similar properties; (3) Relations
describe the connection among entities and concepts; (4) Attributes are associated with entities to describe
them from certain aspects; (5) Qualifiers1 are constraints on other knowledge items to specify under which
conditions that they are true. To answer the example question, we need information about entity “Lebron James”
and the most famous basketball player in China. Their heights are naturally attributes. It is worth noting that there
are variant definitions for basic knowledge elements. For example, visual knowledge symbols typically defines
Objects, which shares a similar definition with Entities. Thus, the data manager need to provide a compiler
to translate different knowledge elements into unified symbols.

Knowledge-oriented data manager brings benefit in twofold. First, the knowledge-oriented data management
enables precise knowledge manipulation, in contrary to scattering knowledge in raw data. For example, plain text
data only allows for fuzzy similarity matching with query utterances, whereas the knowledge-oriented data manager
provides a much more accurate method to access information by posing constraints on the knowledge such as
retrieving entities when constraining their concept. This capability has the potential to reduce hallucination when
generating answers conditioned on the given data. Second, the knowledge-oriented data manager gathers knowledge
complementary with each other from different sources, which broadens the knowledge coverage.

2.2. Knowledge Manipulator

Knowledge manipulator provides well-defined knowledge manipulation primitives on the knowledge sources.
These primitives have strictly defined behavior, which describes the intended outcome of each individual primitive,

1Also known as Hyper Relations or CVT in different literature [22, 29].



S. Cao et al. / Instructions for the preparation of a camera-ready paper in LATEX 5

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

without stipulating specific their implementation algorithms and techniques. As a result, each knowledge manip-
ulation primitive can be realized via neural models, symbolic methods, or a combination of both. They can be
assembled into programs, the execution of which produce the final result for a complex reasoning task.

Specifically, knowledge manipulation primitives include: (1) Direct knowledge access, which retrieves elements
from the data structure according to specific requirements, e.g., linking “Lebron James” to the entities they refer
to, a process known as entity disambiguation; (2) Knowledge processing, which operates on the outputs of other
knowledge operations, e.g., find the most famous one in China from all basketball player entities; (3) Knowledge
updating, which offers the capability to refresh and refine outdated information in the data structure.

The precise knowledge manipulation brings two key advantages. Firstly, these unified primitives act as an inter-
face to incorporate various implementations with complementary capacities for the same objective. This allows for
the selection of the optimal implementation to construct the final manipulating operation (how to choose optimal
implementation is undertaken by the reasoning conductor in Section 2.4). Secondly, by atomizing basic operations,
the overall system imparts explicit meanings to each procedure and preserves the corresponding intermediate results.
Consequently, human users can inspect not only the final answer, but also the output of each individual operation.
This transparency of execution thereby enhances interpretability.

2.3. Reasoning Planner

Reasoning planner decomposes knowledge-intensive complex reasoning tasks into assembled knowledge primi-
tives. Acting as an interface, it comprehends human requirements and represents them as reasoning processes, i.e.,
the composition of basic operations, and the execution result of reasoning process is the answer for the knowledge-
intensive complex reasoning task.

Specifically, it takes the language understanding ability of neural models to decompose a complex ques-
tion/instruction into basic symbolic units, i.e., an ordered list of steps. In our framework, the format of steps is
not constrained, and can be expressed through either natural language or symbolic operations. The reasoning pro-
cess output by planner is therefore a multi-step program, a chain-of-thought reasoning process, or a sequence of
simple questions. For example, for the question “Who is taller, China’s most famous basketball player or the bas-
ketball player Lebron James?”, a possible ordered list of steps outputted by the planner is: find all basketball player,
then filter by attribute nationality being China, and identify the most famous one. Finally, the identified entity is
compared with another finded entity, Lebron James, in terms of their heights.

The planning module has multiple different responsibilities, among which the most important is to refine ambigu-
ous human intention into well-defined knowledge manipulations. In this process, it allows humans to express their
intention in a human-friendly way—natural language. Most recently, large scale pre-trained language models show
potential to make plans according to natural language prompts, due to its remarkable language understanding and
generation abilities, which sheds light on the feasibility to achieve this goal. Secondly, the planning module extracts
higher order intentions from natural language descriptions. For example, answering the question “Did Aristotle Use
a Laptop?” is an implicit reasoning task that can be planned with our reasoning planner.

2.4. Reasoning Conductor

Reasoning conductor makes decisions based on the candidate reasoning processes given by the reasoning planner,
and executes the knowledge manipulator on the multiple-sourced knowledge to obtain the final answer. Acting as
a decision maker, it has the ability to schedule the planner and manipulator flexibly, trying to search an optimal
solution for the whole task.

Specifically, for a natural language question/requirement that describes the complex reasoning task, there may
exist multiple ways to plan the reasoning process, and each primitive in the reasoning process can incorporate various
implementations. For example, if the user poses a complex question “Who is taller, China’s most famous basketball
player or the basketball player Lebron James?”, there are multiple ways to locate the most famous basketball player
in China: 1) From the perspective symbolic method, we can identify all the basketball player from China in the
knowledge base, and use their node degree in the knowledge graph to measure how famous they are; 2) From the
perspective of neuron method, we can retrieve the most famous basketball player from the memory of LLMs with
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appropriate prompt; 3) As a combination, we can also ask LLMs to read the information of all Chinese basketball
players in the knowledge base and identify the most famous one. With so many options, an ideal reasoning conductor
need to assess the pros and cons of different plans and choose the optimal one.

The reasoning conductor brings two advantages for our framework. First, it can select an optimal reasoning
process from our planning module, and decide the optimal implementation strategies for the knowledge manipulator
by systematically considering multiple factors comprehensively, including the computational cost, the precision, and
recall. Second, it allows users to customize their own priority for decision making, by injecting prior knowledge into
the reasoning process, e.g., choosing knowledge base as the primary knowledge sources.

2.5. The Overall Architecture with Human in the Loop

Human possess prior-knowledge and evolving posterior knowledge about the world. In the meanwhile, the ar-
chitecture still surfers out of distribution tasks. To better serve human needs, the proposed architecture also allows
human to improve its world understanding and performance with feedbacks. We highlight three most important life
cycles that involve both human users and system modules.

The knowledge updating cycle allows human users to update the knowledge in storage. This process includes
allowing user to inspect knowledge when the answer is less satisfactory and annotate newly involved knowledge. In
the program fixing cycle, human users are allowed to find error programs given by the reasoning planner and help
to select the optimal reasoning path if the solver selects the sub-optimal solution. Humans not only help the system
solve current complex reasoning task instantly, but also accumulate training data, which is further used to train
better task planner and problem solver. The human-aided problem solving cycle allows human user to decompose
complex reasoning tasks into simpler ones on the fly in a dialogue. The system coordinate with the human user
to solve simple reasoning tasks and assemble their output into the final result We credit knowledge manipulating,
planning and conducting plans as fundamental skills of humans. As a such, the human-in-the-loop process does not
need to specify the human to be an expert.

3. Related Research and Technique towards the Architecture

We introduce existing techniques that can be used to implement the proposed architecture in Section 2. We also
summarize their advantages and potential directions for enhancement in building a neural-symbolic system to solve
complex reasoning tasks.

3.1. Knowledge-oriented Data Manager

We introduce techniques that are used to manage and represent knowledge from different sources, including
knowledge base, textual corpora, large language models, and other knowledge sources.

Knowledge Base. Knowledge base2 stores crowd-sourced knowledge in the format (h, r, t) [22, 23, 30]. h and t are
head node and tail node, while r is the relation between the head node and the tail node. They are further classified
as fact knowledge, hierarchy knowledge, attribute knowledge, and qualifier knowledge. Specifically, for fact knowl-
edge, h and t are entities and r is a relation. For hierarchy knowledge, t is a concept, and h is either an entity that falls
into the category of h or a subconcept of h, where r denotes isInstanceOf and subClassOf, respectively. For
attribute knowledge, h is an entity, r is the attribute name, and t is the attribute value. Qualifier knowledge recur-
sively specifies the condition under which other knowledge is true, where h is a triple of the constrained knowledge,
r is an attribute name, and t is the attribute value.

2Also known as knowledge graph.
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Textual Corpora. Textual corpora are rich in unstructured knowledge. They can be obtained via search en-
gines [31] and aligned with the unified knowledge schemata through a series of information extraction algorithms,
such as named entity recognition, entity linking [32], relation extraction [33, 34], and entity typing [35].

In managing textual knowledge, markup languages plays a key role as well-defined symbolic system. GraphQ IR
uses sentinel tokens to mark special knowledge elements, e.g., <C></C> for concept. Although GraphQ IR [36] is
originally proposed to formally represent natural language questions, it shows potential to record textual knowledge
in textual data. Other techniques include resource description framework (RDF) and web ontology language (OWL).

Model Parameters. Large scale pre-trained language models (LLMs) [5, 6] are rich in parametric knowledge.
Their knowledge is accessed via knowledge probing [26, 37, 38]. These method constructs template prompts to
require LLMs continue to output the desired knowledge following specified knowledge schemata.

Other Knowledge Sources. There are also other data structures: scene graph [39] encodes object instances, at-
tributes of objects, and relationships between objects to denote the semantics of an image; tables can be transformed
to knowledge graphs with heuristic rules [40].

3.2. Knowledge Manipulator

The implementation of knowledge manipulation primitives is twofold: how to design the atomic knowledge op-
erations and how are the atomic knowledge operations executed.

Knowledge Manipulation Operation Design. Existing design for knowledge manipulations are classified as three
main categories. (1) λ-calculus Based. λ-calculus is a general computational model, which is proved to be Turing
complete [41]. λ-calculus defines atomic operations as λ-functions to represent natural language questions [42]. To
facilitate operating on knowledge bases, they evolve into λ-DCS [43–46]. (2) Database Query Based. Knowledge
bases are usually stored in compatible with database, such as Virtuoso and Neo4j. Thus, it is direct to use graph
database query primitives as knowledge manipulation primitives. They include SQL [47] for relational database,
SPARQL [48] for graph database, and Cypher for attributed graph database. (3) Knowledge-oriented Operations.
Most recently, researchers propose knowledge-oriented programming language (KoPL) [12], which designs operates
on knowledge elements, such as Relate stands for “find entities that have certain relation with the given entity”.

Knowledge Manipulation Operation Realization. The realization varies according to the knowledge sources.
Here we take Relate operation as the representative example to show potential realization strategies.

Knowledge Graph Based. The most direct way to realize knowledge manipulation on knowledge base is sub-
graph matching. For example, if the triple (Mark Twain, writing language, English) is stored in the knowledge base,
then we can directly find the entity that have the relation “writing language” with Mark Twain. To incorporate neural
method, we also realize knowledge manipulations in a semantic space using knowledge embedding [49]. There are
also attempt to model reasoning on knowledge graph as multi-hop random walk agent [50].

Textual Corpora Based. Another method is to employ the knowledge in text corpora with open question an-
swering, e.g., answering the question “What is the written language of Mark Twain?”. Typically, open question
answering adopts a two-stage paradigm, i.e., first retrieves relevant documents from the large-scale text corpora,
and then performs reading comprehension over the documents to obtain the final answer.

Language Model Based. LLMs are capable of answering questions with the rich knowledge stored in models’
parameters. And the question “What is Mark Twain’s writing language?” can be answered by prompting the LLM
to perform open-domain question answering.

3.3. Reasoning Planner

The planner requires the language understanding ability to translate natural language questions or instructions
into explicit reasoning processes. As we introduced in Section 2.3, the translated reasoning process can take the
forms of programs, chain-of-thought reasoning steps, or natural language sub-questions.

Here we would like to introduce the reasoning processes in details. (1) For programs composed of symbolic
knowledge manipulators, Rational Meaning Construction [51] adopts Church programs to offer a structured repre-
sentation for expressing novel situations and arbitrary problems with respect to a meaningful model over possible
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world states. W3C officially recommends SPARQL [52] for manipulating and querying RDF stores since 2008 [53].
KoPL [12] is a newly emerged knowledge-oriented programming language designed for querying knowledge base
by executing a multi-step program that takes knowledge elements as the arguments. Other programs include Cypher
[54], λ-DCS[43], λ-calculus [55], etc. These languages have their own advantages and drawbacks, and can be tran-
spiled to each other with the help of intermediate languages such as GraphQ IR [36]. (2) For chain-of-thought (CoT)
reasoning, they are composed of step-by-step natural language reasoning steps [56]. With CoT, the ability of LLMs
to perform complex reasoning is improved significantly. (3) For natural language sub-questions, a representative
is Question Decomposition Meaning Representation (QDMR) in the BREAK dataset [57], which constitutes the
ordered list of steps, expressed through natural language, that are necessary for answering a question.

For the planner model, we can take planning as a Seq2Seq translation task and employ an encoder-decoder
framework for the model. Such methods usually rely on a large amount of labeled data, i.e., question and reasoning
process pairs [12], which are often lacking because such annotation is both expensive and labor-intensive. Another
paradigm is to learn from question-answer pairs by taking the answers as weak supervision and searching for
gold reasoning processes with reinforcement learning (RL) [58, 59], which is challenging due to combinatorial
explosion in searching space along with extremely sparse rewards. Recently, with the remarkable generalizability
and language understanding ability of LLMs, a new path is open by inferring the reasoning process with in-context
learning [60]. For example, Program-aided Language models (PAL) uses the LLM to read natural language problems
and generate programs as the intermediate reasoning steps, and offloads the solution step to a runtime such as a
Python interpreter [61].

3.4. Reasoning Conductor

The reasoning conductor aims to obtain an optimal solution for the knowledge-intensive complex reasoning
task. It needs the flexibility to plan dynamically and consider multiple factors to make a global choice, including
whether the chosen knowledge resource is suitable, whether the planning route is the most efficient, and how much
computational resource it costs. One possible way to dynamic reasoning conductor is probabilistic programming,
e.g., Rational Meaning Construction [51] employs an inference function that computes probabilities over the space
of possible worlds consistent with and conditioned on information in the Church program to infer the optimal
answer. Another direction is to optimize on tree-like computation graphs. Here we provide some examples.

For the task of answering complex logical queries on incomplete knowledge graphs, Query Computation Tree
Optimization (QTO) [62] finds the optimal solution by a forward-backward propagation on a tree-like computation
graph, i.e., query computation tree. In particular, QTO utilizes the independence encoded in the query computation
tree to reduce the search space, where only local computations are involved during the optimization procedure, i.e.,
they find a set of entity assignments that maximizes the truth score of a first-order logical query based on the truth
value of each one-hop atom provided by a knowledge embedding based link predictor.

For the task of answering complex natural language questions, RoHT [63] first builds the Hierarchical Question
Decomposition Tree (HQDT) to understand the semantics of a complex question, and then conducts probabilistic
reasoning over HQDT from root to leaves recursively, to aggregate heterogeneous knowledge at different tree levels
and search for a best solution considering the decomposing and answering probabilities.

For the task of other complex reasoning tasks that needs search or planning such as Game of 24, ToT [64] utilizes
LLMs to perform deliberate decision making. This involves considering multiple reasoning paths, evaluating options
internally, and determining the most suitable next steps, as well as looking ahead or backtracking when necessary
to make global choices.

3.5. Human in the loop

As stated in Section 2.5, it is of great benefit to involving human into the reasoning loop, spanning all four
components of the overall architecture.

For the knowledge-oriented data manager, it takes the responsibility of providing up-to-date, accurate and com-
prehensive knowledge, in which humans can play an important role by sharing and editing knowledge. For example,
Wikidata employs crowd-sourcing to extend and edit the stored information, even without creating an account, and



S. Cao et al. / Instructions for the preparation of a camera-ready paper in LATEX 9

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

the form-based interface makes editing easy [65]. The Wikipedia is also committed to “a world in which every
single human being can freely share in the sum of all knowledge”.

For the knowledge manipulator, it takes the responsibility of accessing, processing, and updating knowledge with
atomic actions. And humans can design, update and expand the set of atomic actions with their prior knowledge on
the targeted complex reasoning task. For example, for the complex visual tasks such as factual knowledge object
tagging and language guided image editing, actions such as image resizing, cropping, filtering, and colorspace
conversions are designed by experts [66].

For the reasoning planner, it is possible for the planner to improve its performance with the human feedback. For
example, given an interaction interface, the system explains the predicted program step by step in natural language
along with intermediate answers to the user, and then, the user can give feedback for the inspected wrong step, thus
the current planner can accordingly be updated to improve accuracy. In another case, when the planner outputs an
explainable program with transparent reasoning process, e.g., KoPL, the user can even edit with simple graphical
operators, such as “dragging” to add knowledge operators and “slot filling” to designate operator arguments [67].

For the reasoning conductor, it is also able to improve its performance with human in the loop, if humans have
prior knowledge for problem solving, i.e., humans can select the most optimal solution for the conductor, and such
data can be collected as preference data to train the conductor with reinforcement learning from human feedback
(RLHF) [68]. For example, for WebGPT [31], guidance from humans is central. They collected demonstrations
and comparisons from humans to train neural models to search and navigate the web. Specifically, they collected
examples of humans using the browser to answer questions (demonstrations) to teach neural models to use their
text-based browser. And further, they collected pairs of model-generated answers to the same question and asked
humans which one they preferred (comparisons) to improve the optimize answer quality.

4. Conclusion and Future Directions

Inspired by the promising capability to incorporate both neural and symbolic models [13, 20], in this paper, we
design an initiative architecture to solve knowledge-intensive complex reasoning tasks. The architecture not only
utilizes the capability to understand rough descriptions and rich knowledge of LLMs, but also enables symbol
system to constraint the behavior of LLMs to reduce hallucination. Although there are many pioneer techniques that
indicates the feasibility of our proposed architecture, as we suggest in Section 3, it still requires efforts to build the
overall architecture. We believe that future works mainly fall primarily into two aspects: the macroscopic and the
microscopic.

At the macroscopic level, the challenge lies in selecting and integrating specific techniques to implement the four
key components. This is non-trivial, as we are essentially designing standardised behaviour for different algorithms
to coordinate to achieve the same goal. For example, the problem solver may accept plans given by both LLMs and
traditional syntactic-based semantic parser, which poses a requirement on the consistency between the output of
both sides. This entails not just cherry-picking the best performers within each module but also ensuring that they
can effectively communicate with each other and function as a cohesive system.

At the microscopic level, we should not stop the pace to design better implementations for each component and
atomic operations for the knowledge manipulation primitives. We propose two main research directions for future
work. First, we should explore methods to constrain LLMs to perform well-defined symbolic reasonings. Existing
research includes prompt template design and constraint decoding. However, there is still no guarantee to obtain
behaviour following strict schemata. Second, it is also crucial to design coherent and user-friendly interfaces for
each component to incorporate human in the loop. The interface should provide information as close to natural
language as possible to allow human users to inspect the working status of the system. It also needs to provide
guidance and convert human user actions into consistent behaviour of the intervened component in the system. In
addition, we need to explore more interactive systems, such as in the form of dialogue, to carry out the functionality
of the system.

In conclusion, we specify the necessity, responsibility, and potential implementation techniques for each com-
ponent to achieve a general architecture for knowledge-intensive complex reasoning tasks. Although there are still
insufficient consideration with regard to the whole design and implementation details, it is intriguing to realize the
whole system to achieve its potential capacity in the near future.
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