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Abstract. The field of knowledge engineering is experiencing a substantial impact from the rapid growth and widespread adop-
tion of Neurosymbolic Systems (NeSys). In this paper, we investigate how NeSys are already used in knowledge engineering
practices leading to the emergence of the new area of neurosymbolic knowledge engineering. To that end, we apply a data-driven
analysis based on data collected in a large scale Systematic Mapping Study about systems used to create knowledge resource by
employing NeSy approaches that combine Machine Learning and Semantic Web components. We characterise several aspects
of this novel field, including specific approaches to knowledge engineering with NeSys identified from the data, the maturity of
these systems as well as the main Machine Learning and Semantic Web modules used. Additionally, we also provide concrete
examples of neurosymbolic knowledge engineering systems. We conclude with an overview of research challenges such as the
need for new methodologies, increased auditability, and considering the impact of human users in neurosymbolic knowledge
engineering.
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1. Introduction

Knowledge engineering (KE), broadly defined as the collection of activities for eliciting, capturing, conceptualising
and formalising knowledge for the purpose of being used in information systems looks back to a long history. At
the turn of the century, CommonKADS [1] proposed a methodology for knowledge engineering defined as “the de-
velopment of information systems in which knowledge and reasoning play pivotal roles". Emerging research on the
topic of the Semantic Web has lead to knowledge engineering methods focused primarily on creating ontologies [2]
or even networks of ontologies (NeOn) [3] using mostly manual approaches. The linked data (LD) movement has
highlighted the importance of (instance) data and initiated methods for creating linked datasets (e.g., the various LD
life-cycle methods [4]). The focus on and availability of large-scale data continued ever since. Especially coupled
with the increased popularity of machine learning models, knowledge engineering has evolved far beyond what was
foreseen in the first decade of the century. So what is the next major stage in KE?

The hypothesis of this paper is that, the advent of and recent intensified interest in neurosymbolic (NeSy) systems will
represent the next major turning point in the field of KE. Indeed, the development and application of neurosymbolic
approaches is seen as one of the key trends in Artificial Intelligence (AI) research [5]. This general trend impacts
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several sub-fields of AI leading to a variety of interpretations of this vision. For example, in the Semantic Web area,
the community proposed techniques such as knowledge graph embeddings (KGE) and deductive reasoning [6].
Furthermore, there is a pronounced trend of building systems that combine Semantic Web and Machine Learning
components (which we refer to as SWeML systems). Indeed, in a recently published Systematic Mapping Study
(SMS) we identified nearly 500 papers reporting such systems in the period 2010-2020, with most papers being
published in 2016-2020 [7].

Such intense developments, trigger the emergence of new ways of performing knowledge engineering activities by
making use of these new types of neurosymbolic systems. We see this trend as the emergence of a new phase in
KE namely that of Neurosymbolic Knowledge Engineering. For this introductory special issue of the journal on
Neurosymbolic Artificial Intelligence, we aim to answer two main research questions:

– Is there a new field of Neurosymbolic Knowledge Engineering emerging? And if yes, what are its key character-
istics? Our goal in answering this research question is both to provide data-driven evidence of the emergence of
this field and its characteristics as well as to provide a flavour and concrete examples of neurosymbolic systems
that perform KE. To that end, we analysed NeSy systems that were used in a knowledge engineering setting to
produce a knowledge resource such as a taxonomy, an ontology or a knowledge graph. Given the considerable
breadth of the NeSy research area, we focus our analysis on a sub-family of NeSyS, namely SWeML systems.
The papers describing such systems were collected and analysed as part of the broader Systematic Mapping Study
mentioned above [7] which characterised the landscape of SWeML systems (used not only for knowledge engi-
neering purposes). Relying on the results of study [7], allows deriving data-driven conclusions about this field.
After a description of our methodology for collecting the data for analysis (Section 2), we present our initial, data
driven findings on the characteristics of the emerging area of Neurosymbolic Knowledge Engineering such as
typical system patterns (Section 3), the main machine learning models most often used (Section 4), the Semantic
Web resources employed (Section 5) and the maturity of these systems (Section 6).

– What are open challenges for the field of Neurosymbolic Knowledge Engineering? Based on the conclusions from
the analysis of existing neurosymbolic KE systems, as well as additional considerations, we derive a number of
open challenges for the Neurosymbolic Knowledge Engineering field (Section 7).

2. Methodology and Collected papers

Paper collection through an SMS. We base our analysis on data collected as part of a large Systematic Mapping
Study [7] which aimed to characterise SWeML systems that have been published during the 2010-2020 period. Dur-
ing the SMS, the main digital libraries (WebOfScience, ACM Digital Library, IEEE Xplore, Scopus1) were queried
for those papers that, in their abstract and keywords, mention terms related to the Semantic Web (e.g., knowledge
graph, linked data, semantic web, ontolog* etc,) and to Machine Learning (e.g., deep learning, neural network,
embedding, representation learning, feature learning, language model etc). Additionally, as the aim was to collect
papers describing concrete systems that fulfil a given task, paper abstracts also needed to mention typical application
areas (e.g., Natural Language Processing, Computer Vision, Information Retrieval, Data Mining, Information inte-
gration, Knowledge management, Pattern recognition, Speech recognition). The collected 1986 papers underwent
two cycles of selection in which authors systematically applied a number of selection criteria, as discussed in [7], to
identify the most suitable papers. Inclusion criteria were publication date (2010–2020), language (English), publi-
cation type (peer re-viewed), accessibility (accessible to authors), duplicates (latest version), whether the described
systems had an interconnection between the SW and ML component, whether the system solved a concrete task and,
finally, whether the paper had a sufficiently good level of English and scientific quality to be fully understood. This
lead to a corpus of 476 papers. In-depth methodological information about the paper selection process is available
in [7] and its accompanying protocol document.

1http://www.webofknowledge.com/, https://dl.acm.org/, https://ieeexplore.ieee.org/, https://www.scopus.com/

http://www.webofknowledge.com/
https://dl.acm.org/
https://ieeexplore.ieee.org/
https://www.scopus.com/
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Data structures Algorithmic modules

symMLsym
1 2

A1: s1-M-s2

d ..... data
s ..... symbolic
M ..... ML
K ..... KR

{ ..... begin parallel 
/ ..... seperation parallel
} ..... fusion parallel
- ..... processing flow

symdata ML KR sym

sym

T5: {d-M-s1/s2}-K-s3

1

2

3

Fig. 1. Boxology-based notation of system patterns and three example patterns in graphical/textual notation.

Data extraction from papers during the SMS. After reading the 476 papers, key data was extracted, related to:

1. Bibliographic information such as authors, their institutions, publication year and venue.
2. The domain of application (e.g., life sciences) and the task solved by the system (e.g., text analysis).
3. System architecture in terms of their inputs/outputs and the order of their processing units.
4. Characteristics of the Machine Learning modules such as the type (e.g., attention) and training (e.g., supervised).
5. Characteristics of the Semantic Web modules used as input to the system, such as their type (e.g., taxonomy,

ontology, knowledge graphs), size, formalisation language etc.
6. The level of maturity of the systems (e.g., prototype, industrial strength application), system transparency in

terms of sharing source code, details of infrastructure and evaluation setup as well as the existence of provenance
capturing mechanisms.

KE-specific dataset selection. The data collected as part of the SMS has been released in the form of a knowledge
graph [8] which can be queried through a SPARQL interface2. To answer this paper’s research questions, we use
the SPARQL interface to select a subset of papers relevant to KE. Concretely, we select those papers that reported
systems performing the tasks of Graph creation and Graph extension while producing a Symbol as the final output,
consisting of 127 papers (out of the 476 papers in the original survey results). Note that the Graph creation and
Graph extension tasks are high-level tasks which cover more detailed general tasks such as Ontology Creation,
Taxonomy Creation, as well as domain-specific tasks, e.g., Drug Target Prediction and Drug Repurposing. For this
paper, we filter out domain-specific tasks and identify 123 KE-related papers (out of 127 KE-related papers) for the
analysis described in the next sections.

3. Neurosymbolic Knowledge Engineering Patterns

System architecture was one of the key characteristics extracted during the SMS as explained in Section 2. Through
the usage of system patterns to represent these architectures, we were able to present our findings in a comprehensive
way and make systems comparable from a workflow and data flow perspective. In this section, we start by providing
background information on the neurosymbolic system patterns that were identified in [7], such as the notation used
and the various typologies that were introduced (Section 3.1). The rest of the sections analyse the patterns that are
most frequent or more specific for KE tasks providing examples of concrete systems employing these patterns.

3.1. Neurosymbolic System Patterns

Pattern notation. To describe internal processing flows, we used the boxology for neurosymbolic systems intro-
duced by [9]. This boxology proposes two base elements: algorithmic modules (i.e., objects that perform some
computation) that can be of type inductive (ML) or deductive (KR), and data structures, which are the input and
output to such modules that can be of symbolic (sym) (such as semantic entities or relations) or non-symbolic (data)

2SPARQL interface for querying the knowledge graph based representation of the data extracted by [7]: https://semantic-systems.net/sparql/.

https://semantic-systems.net/sparql/
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F4-KE
4

80%

F-others-KE
2

2%

I-others-KE
2

11%

T8-KE
4

100%

T-others-KE
6

9%

T1-KE
7

54%

All Papers

Fig. 2. Comparative pattern frequency across the overall SWeML dataset (2 inner layers) and those specific to KE systems (outer layer).

nature (such as text, images, or embeddings). Note that the distinction between symbolic and non-symbolic represen-
tations is a reflection of "model-based" vs. "model-free" representations as explained in detail in [9]. Fig. 1 depicts
both the components of the boxology (left) as well as two concrete system patterns based on this boxology (right).
The boxology has both a graphical notation and a corresponding textual notation which we use interchangeably
in this paper. From the 15 system patterns introduced in [9], we could identify 11 patterns in use in the surveyed
systems. Additionally, 33 new systems patterns were discovered, thus resulting in a total of 44 known patterns.

Pattern Typology. The 44 patterns have been classified into a pattern typology based on their complexity see two
examples, one simple (A-pattern) and a complex (T-pattern) in Fig. 3). Simple patterns have a single processing unit.
They may accept one input (atomic type patterns represented with A-) . The textual notation for A1 is (s-M-s),
indicating a machine learning component that takes as input a symbolic component and produces a symbolic output.
Patterns can also consist of multiple inputs as shown with (fusion type patterns represented with F - see example
in Fig. 5). More complex patterns can emerge from combining simple patterns, as follows. I-Patterns (e.g., Fig. 4)
are a chain of Atomic Patterns, T-patterns (e.g., Fig. 7) are a chain of Atomic and Fusion Patterns, and Y-patterns
are a combination of two (or more) Atomic Patterns via a Fusion Pattern. See [10] for a detailed description of all
patterns and their classification.

The fact that over 25% (123 from 476) of all SWeML systems supports the completion of a KE task, as discussed in
Section 2, is a strong evidence for the emergence of a new field for Neurosymbolic Knowledge Engineering. We start
characterising this field from the perspective of the system patterns employed and by giving examples of concrete
KE systems. We perform our analysis in comparison with the overall dataset to answer questions such as: Which of
the general SWeML system patterns are used for KE? What is the distribution and frequency of these KE patterns?
We found that the 123 KE systems employed 18 distinct patterns from the total of 44 patterns, thus, in this dataset,
less than half of the possible patterns were used for KE. Figure 2 depicts the relation between patterns used in the
overall dataset (of 476 papers) and those for KE (in the subset of 123 papers we selected) as follows:

– Inner Layer 1: This layer presents the prevalence of the 6 pattern types (A, F, I, T, Y and "Other") within the 476
papers, showing that simple patterns of type A and F are the most frequently used in the overall dataset.
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– Inner Layer 2: depicts the frequency of concrete patterns such as A1, F2 etc. In this layer, we only show concrete
patterns that are also used for KE and group the rest into a group denoted with "others". For example, among A
patterns, the concrete patterns relevant for KE are patterns A1 and A2. These are explicitly depicted while the
other A patterns are shown collectively as A-others.

– Outer Layer: depicts most concrete patterns that are also used in KE (concrete patterns that are only used once
are not depicted for the sake of visibility). For example, the A1 pattern occurs in 50 KE papers (i.e., in 57% of all
papers reporting on systems based on the A1 pattern) while A2 is used in 13 KE papers (i.e., in 52% of all papers
reporting on systems based on the A2 pattern).

Several conclusions can be drawn from this comparative visualisation. First, similarly to the overall dataset, KE
systems also predominantly employ simple patters of type A and F. Second, patterns that are frequent in the overall
dataset, also tend to be frequent in the KE dataset, in particular A1, A2, F2, and I1, which we further discuss in
Section 3.2. Third, some patterns are more often used in KE systems than in other systems, thus representing patterns
that are likely specific for KE as detailed in Section 3.3. These frequent and specific patterns are of particular interest
to knowledge engineers as potential blue-prints for their work. The next sections provide more in-depth details
about the various frequent/specific KE patterns as well as examples of (typical) systems that employ them. Finally,
in Section 3.4 we investigate which KE tasks are solved with which patterns.

3.2. Frequent Patterns for Knowledge Engineering

In the case of the papers related to knowledge engineering tasks the most frequent patterns (each used in more than
10 papers) are A1, A2, F2, and I1. Next, we describe and exemplify the use of these patterns (cf. Table 1 for an
overview).

Fig. 3. Pattern A1

A1 (s-M-s), 50 papers, Fig. 3. A1 is a very simple pattern which takes
symbolic input and processes it through ML to produce new symbolic out-
put. Although the most frequent, this pattern is only used for two KE tasks:
(mainly) KG Completion and KG Creation. The typical papers make use
of KG embedding on a semantic structure which is then used on a down-

stream task such as entity typing, link prediction or ontology population. For example, in [11] authors propose an
embedding model that considers both ontology and instance information from a KG. The created embedding is used
for triple prediction and ontology population.

Fig. 4. Pattern I1

I1 (s1-M1-d-M2-s2), 15 papers, Fig. 4 corresponds to graph embedding
approaches (M1) which embed a KG (s1) into a vector space (d) which is
then further processed by a second ML component (M2) to create a sym-
bolic structure. This pattern is almost exclusively used for KG completion

tasks (e.g., for link prediction). For example, paper [12] focuses on representation learning which incorporates also
attribute values as follows: attribute-value pairs (s1) are transformed into word embeddings (d) through word2vec
(M1), which are then input for CNN (M2) to perform relation prediction (s2).

Fig. 5. Pattern F2

F2 (d/s1-M-s2), 14 papers, Fig. 5, is a pattern that is not only frequent in
the overall dataset (used in 70 papers) but also in the KE dataset. For ex-
ample, in [13] authors focus on classical knowledge graph embedding for
supporting KG completion tasks. However, in this case authors focus on
a noisy KG (s1, i.e., a KG with incorrect information) and additionally to
the KG they also embed supporting textual descriptions of the KG entities
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Ref. Title Description Pattern
[11] Universal Representation Learning of

Knowledge Bases by Jointly Embedding
Instances

Embedding model taking in ontology & instance
information from a KG

A1 s-M-s

[12] Representation Learning of Knowledge
Graphs With Entity Attributes

Attribute-value pairs (s1) are transformed into
word embeddings (d & M1) and then sent to a
CNN (M2) to perform relation prediction (s2)

I1
s1-M1-d-M1-s2

[13] Embedding learning with triple trusti-
ness on noisy knowledge graph

Noisy KG (s1) and textual information (d) to
compute trustworthiness of KG triples (s2)

F2
(d/s1-M-s2)

[14] Diag2graph: Representing Deep Learn-
ing Diagrams In Research Papers As
Knowledge Graph

Diagrams from papers are sent to a CNN to ex-
tract a KG-based representation of the diagrams

A2 d-M-s

Table 1
Examples of papers describing systems that employ patterns that are frequent for knowledge engineering.

(d) as a basis for computing trust-levels for the KG triples.

Fig. 6. Pattern A2

A2 (d-M-s), 13 papers, Fig. 6 - The majority of papers employing A2 is
focused on KG creation (7), the rest on ontology learning (4) and taxon-
omy creation (2). The works focus on extracting information from mostly
unstructured and/or domain-specific texts. Domain-specific use cases in-

clude the cultural [14, 15], cybersecurity [16], academia [17, 18] and social media [19] domains. Some approaches
are used for education purposes due to their contextualisation of implicit knowledge [14, 16, 20]. Other papers de-
scribe general approaches for documents [17, 18, 21, 22], figures [17] or relational data [23]. Almost half of the
papers (6) exploit word embeddings (w2v) as their ML component.

3.3. Patterns specific for knowledge engineering

Are there patterns that are specifically used for knowledge engineering tasks? To identify such patterns, we compute
the specificity of patterns as a ratio between their use in the KE dataset and the number of times they are used in
the overall dataset. We identify that three of the frequent patterns are also often used in the KE dataset and can be
considered specific to KE. These are: I1 (Figure 4) for which out of 27 systems that employ this pattern 15 systems
address knowledge engineering (specificity 56%), A1 (Figure 3), with 50 systems out of a total of 92 are used for
KE (specificity 54%) and A2 (Figure 6) with 13 out of 26 uses of this pattern being for KE (specificity 54%).
Additionally to these three patterns which are both frequent and specific for KE, there are other three patterns with
high specificity scores, as follows (cf. Table 2 for an overview of concrete examples):

Fig. 7. Pattern T8

T8 (s1-M-s2/s3-K-s4), Fig. 7. This pattern occurs entirely in papers fo-
cusing on knowledge engineering (specificity 100%). Indeed, all four pa-
pers from the overall dataset which utilised pattern T8 were focused on
knowledge completion. This pattern captures approaches where rules are
learned from a (large) KG and re-applied to extend, complete, or correct

that KG. In paper [24], a winery related ontology is built (WineCloud) and extended in an iterative process. The
initial WineCloud ontology (s1) is built based on expert interviews and is taken as input by an Association Rule
Mining (M) module to deduce a set of SWRL rules (s2). The Pellet reasoner (K) is used on the initial version of
the ontology to apply the derived rules and provide an extended version of the WineCloud ontology. Paper [25]
focuses on knowledge graph completion through rules. Large KGs such as DBpedia, YAGO, Wikidata are inputs to
an association rule mining system (M/the paper introduced AMIE+) which automatically extracts rules (s2). Rules
are then applied through reasoning to derive new information and complete the KG. In paper [26] a rule induction
technique is presented to mine graph patterns from large KGs and find abnormalities and missing links. The notion
of rule is not a first-order logic rule, but a graph pattern that captures the expected neighbourhood around a KG.
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Ref. Title Description Pattern
[25] Fast rule mining in ontological

knowledge bases with AMIE+
DBpedia, YAGO, Wikidata are inputs (s1) to as-
sociation rule mining system (M+ AMIE) which
automatically extracts rules (s2). Rules are then
applied through reasoning (K) to derive new in-
formation and complete the KG (s3 before com-
pletion, s4 after completion)

T8
s1-M-s2/s3-K-s4

[27] Embedding knowledge graphs
based on transitivity and asymme-
try of rules

KG triples (s1) and logical rules between relation
types (s2) are employed to shape the loss function
of the graph embedding model, TARE (M, KG
embedding) is then used for KG completion, to
predict new links in the KG (s3)

F4 s1/s2-M-s3

[28] Representation Learning of Knowl-
edge Graphs with Embedding Sub-
space

Word embeddings are learned, then a projection
of word + node emebddings are learned to be then
applied for link prediction

T1
d1-M1-d2/s1-M2-s2

Table 2
Examples papers describing systems that rely on patterns that are specific for knowledge engineering

Fig. 8. Pattern F4

F4 (s1/s2-M-s3), Fig. 8. Four out of five papers reporting pattern F4 were
centred on knowledge graph completion (specificity 80%). Three of these
four papers are similar: they propose modifications to KGE methods by
infusing background knowledge, in particular, in the form of logical rules
[27, 29, 30]. Indeed, the authors of [27] propose the KG embedding ap-
proach TARE (Embedding knowledge graphs based on Transitivity and
Asymmetry of Rules) where additionally to the KG triples (s2) also logi-

cal rules defined between relation types (s1) are employed to shape the loss function of the graph embedding model.
TARE then performs KG completion by predicting new links in the KG (s3). The second paper, [29] proposes
a principled and scalable method for leveraging equivalent and inversion axioms during the learning process, by
imposing a set of model-dependent soft constraints on the predicate embeddings. The approach is tested on three
different KGE methods (TransE, DistMult, ComplEx) and leads to increased link prediction performance on Word-
Net, DBpedia and YAGO3 datasets. Finally, in paper [30], the authors propose an approach for jointly embedding
knowledge graphs and logical rules. The model is evaluated on link prediction and triplet classification tasks.

Differently from papers [27, 29, 30], paper [31] focuses on extracting non-monotonic rules from a KG and associated
rules. Given a KG (s1) and a set of associated Horn rules (s2), these are input to an Association Rule Mining module
(M) that produces non-monotonic rules (s3, i.e., exception aware rules).

Fig. 9. Pattern T1

T1 (d1-M1-d2/s1-M2-s2), Fig. 9 - is a versatile pattern used for taxonomy
creation [32], KG completion [28, 33–35] and ontology extension [36,
37]. For example, in [28], word embeddings (d2) are learned first and
used in tandem with node emebddings for link prediction (s2).

3.4. Patterns specific for KE task types

We continue our analysis by investigating the relation between KE patterns and the supported KE tasks. In Figure 10
we depict six KE tasks related to the creation or completion of taxonomies, ontologies and knowledge graphs as
well as the pattern types employed to address these tasks. From the right side of the figure it is clear that papers
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Fig. 10. Frequency of the patterns per task. Left side: number of papers reporting a certain pattern, divided by the type of task addressed. Right
side: number of papers for a given KE task/pattern combination.

focusing of tasks related to knowledge graphs are much more frequent than those focusing on tasks related to
taxonomy/ontology engineering. This suggests a shift in research focus towards graph engineering, which has been
less-covered by current KE methodologies.

Specific vs. versatile patterns. We observe that some patterns are specific for certain tasks, as follows:

– Although it appears very frequently, pattern A1 is used almost exclusively for KG completion, within papers
focusing on knowledge engineering. There are a number of other patterns used exclusively, in our dataset, for
knowledge graph completion. These are, in the decreasing order of their frequency in the KE dataset: Y1(6,
s1-M1-d1/d2-M2-d3-M3-s2), T8(4, s1-M-s2/s3-K-s4), F4 (4, s1/s2-M-s3), F3 (2, d1/s1-M-d2/s2), T20 (2, s1-
M1-d1/s2-M2-s3) T15(1, s1-K-s2/s3-M-s4), T17(1, s1/s2-M1-d-M2-s3), Y2 (1, s1-M1-d1/d2-M2-s2-M3-s3). As
KG Completion encompasses several sub-tasks such as link prediction, type completion etc., future work could
analyse whether some of these patters are specifically used for one of those sub-tasks.

– Patterns used exclusively for the task of knowledge graph creation are I3(1, s1-M1-s2-M2-d), I6(1, d-M-s1-K-s2),
T2(1, d1/s1-M1-d2-M2-s2).

On the other hand, some patterns seam to find applicability within a range to tasks, thus being more versatile:

– A2 (d-M-s), appears 13 times in the dataset, and supports tasks for creating different types of knowledge structures
(taxonomies, ontologies, knowledge graphs) by applying ML to a data type input.

– F2 (d/s1-M-s2), was used in four different task types.
– T1 (d1-M1-d2/s1-M2-s2) was also used in four tasks spanning all three types of knowledge structures and various

activities such as completion, creation and extension.

Understanding which patterns can be used for which tasks could play an important role in guiding knowledge
engineers in choosing promising system architectures for a task at hand. In particular, this would enable novice
knowledge engineers to quickly identify patterns that have emerged as adequate for certain tasks from the experience
of the broader KE community.

4. Machine Learning for Knowledge Engineering

How about the use of machine learning components for knowledge engineering tasks? What are the most popular
ML categories that should be part of the toolbox of the future knowledge engineer?
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Fig. 11. Frequency of machine learning models per task/year. Left side: Frequency of ML categories related to knowledge engineering tasks.
Right side: Frequency of the ML categories being used by the papers over 5 years.

In our analysis of machine learning utilization in KE tasks, we grouped machine learning models into three cate-
gories: Deep Learning (explicitly excluding Graph Deep Learning), Graph Deep Learning and Classical ML. As
shown in Fig. 11 (left-side), Deep Learning (DL) models are predominant, used 100 times across various tasks,
asserting their adaptability and efficacy in KE. Following closely, Graph Deep Learning (Graph DL) models show
notable application, especially in KG Completion, with 95 uses. Classical ML models, though less dominant with 50
instances, remain relevant in certain tasks such as KG Completion and KG Creation. This distribution underscores
a trend towards more sophisticated models in KE.

The use of machine learning models in KE has seen a significant growth in recent years. Our analysis, presented in
Fig. 11 (right-side), shows the most trendy machine learning categories for knowledge engineering over the years
2016-2020. In the evolution of machine learning model usage from 2016 to 2020, a significant shift towards ad-
vanced models is evident. The year 2016 saw an equal preference for Classical ML and Graph DL models (40%
each), with DL at 20%. However, by 2020, DL and Graph DL models had surged to 44.44% and 48.15%, respec-
tively, while Classical ML’s usage has receded to merely 7.41%. This shift reflects the increasing complexity of KE
tasks that corresponds to more complex models.

5. Semantic Web Resources for Knowledge Engineering

We perform an analysis of the Semantic Web resources used in SWeML systems for KE tasks based on the categories
of resources introduced in our prior survey [7]. There are six different types of resources found in the systems as
described next.

– Thesaurus is a controlled vocabulary connected with relations that express linguistic relations (e.g., broader and
narrower relations), without a strict logical semantics (e.g., subsumption), e.g., WordNet and ConceptNet.

– Ontology is a terminological model richer than a taxonomy containing also additional named relations and ax-
ioms (T-Box), e.g., SNOMED CT and UMLS ontology.

– Dataset contains semantic instance data (or metadata), corresponding to an A-Box in logics. A collection of
triples describing instances can be considered a dataset, e.g., NELL and SUMO dataset.

– Knowledge base contains both terminological and instance knowledge (TBox+ABox), e.g., YAGO KB.
– Linked dataset contains links (in terms of URI references) to other semantic resources. Such datasets contain

large numbers of instance data while may also include (lightweight) terminological knowledge as well, e.g.,
DBpedia and Wikidata.
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(a) SW resources by types and years (b) SW resources by domains

Fig. 12. An overview of semantic resources used in KE-focused SWeML systems.

– Knowledge graph was most recently defined as "a graph of data intended to accumulate and convey knowledge of
the real world, whose nodes represent entities of interest and whose edges represent potentially different relations
between these entities" [38]. The definition subsumes all the semantic resource type definitions above and more.
Therefore, we use this category for those resources that cannot be assigned to any of teh categories above.

Figure 12 provides an overview of SW resource usage on KE-focused SWeML systems. We found that 92 out of
123 papers use SW resources to various extent. Out of these, 35 employ a single SW resource, while the rest utilise
two or more resources for their tasks. We show the SW resource distribution following our categorisation, which
can be seen in Figure 12a. The figure shows rapid growth of KG and thesaurus utilisation since 2016. In contrast,
the utilisation of other types of SW resources in KE-focused SWeML systems is relatively stable. Figure 12b shows
the classification of the SW resources according to their domain. The resources used for KE tasks typically come
from the general domain, shown in dark blue shades. Domain-specific resources, such as natural sciences, are less
dominant, which could be an effect of the generic nature of the KE tasks.

6. Maturity, Transparency and Auditability

With increased use of SWeML Systems for knowledge engineering, the transparency and auditability of these sys-
tems become increasingly important to better understand the quality and context of the created knowledge resources.

Maturity. In the original dataset, three levels were established to assess the maturity of the overall application:
low/probably low, describing scripts or prototypes, medium systems with simple user interface or error handling or
high, describing stable systems deployed in industrial environments. The entire subset of KE systems was assigned
to be of low/probably low maturity, which is in line with the overall trend in the entire set of analysed SWeML
Systems (over 90% being of low/probably low maturity).

Transparency. The evaluation of transparency parameters was focused on evaluation parameters and their distribu-
tion is also similar to the overall superset of SWeML Systems: Metrics were the best documented parameters (92%),
followed by data (87%), parameters (76%), data-split (71%), software (29%) and infrastructure (15%). All of the
transparency parameters are almost equal or lower (between 1-3%), only parameters and data-split are slightly better
documented in this subset.

Auditability. There is no KE system with any additional provenance capturing, which is not surprising consider-
ing the overall low number of SWeML Systems (three systems) in the entire data set containing any provenance
mechanism. However, in critical domains and with increasing amounts of heterogeneous data sources, metadata and
provenance information across the entire lifecycle should/must be included (cf. EU AI Act or similar regulation).

To conclude, SWeML in general (including KE systems) are still of low maturity. Yet, we expect that SWeML
Systems will continue to mature over the next years in terms of their functionalities and stability. However, despite
this (expected) increase in maturity, there are still open questions in terms of the transparency and auditability of



M. Sabou et al. / Neurosymbolic Knowledge Engineering 11

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

these systems which has already been identified by others. Indeed, there is a lack of mature evaluation techniques
and standard benchmarks for neurosymbolic systems [39]. Furthermore, in the area of NLP, neurosymbolic systems
use different datasets and benchmarks, which hampers the comparison of results [40].

7. Open Challenges for (Neurosymbolic) Knowledge Engineering

From the previous sections, we draw several data-driven conclusions about neurosymbolic knowledge engineering:

– Emerging field. The fact that over 25% of all systems collected by the Systematic Mapping Study focus on solving
a task relevant for knowledge engineering demonstrates that neurosymbolic knowledge engineering is indeed an
emerging field.

– Focus on new tasks. The ontology/taxonomy creation/extension tasks are less frequent in comparison with KG
extension/creation tasks which are currently the key focus (Figure 10). Therefore, not only the type of systems
used for KE is changing, but also the KE tasks to be achieved.

– High variety of system patterns. The analysis of the KE systems revealed that there are groups of systems that
follow the same high-level approach, or pattern. We identified both frequent patterns and patterns that are po-
tentially specific for KE tasks. In total, 18 different patterns were reported by the papers in our dataset. These
patterns correspond to a variety of KE processes, e.g., from systems that learn a semantic structure by applying
ML methods to unstructured data (A2 pattern), to systems that learn and apply rules to extend a semantic resource
(T8) or systems that “infuse" background knowledge (such a logical rules) in KG embedding components (F4
pattern). Similarly to SWeML systems in general, simple patterns (A/I type) prevail. We note that the boxology
notation of [9] played a key role as an instrument for organising the reviewed systems and finding similarities.

– KE task specific patterns. Some of the KE patterns seem to be specifically used for certain KE tasks, at least in
the scope of the analysed systems. This opens the possibility for (novice) knowledge engineers to identify (and
use) community-tested patterns for the task at hand.

– Low maturity, transparency and auditability characterises current neurosymbolic systems used for knowledge
engineering (and also other tasks).

Starting from these conclusions, we see the following open challenges for this research area:

New KE methodologies and tools. The analysis performed in this paper demonstrates that we are at turning point
in the KE community: not only do KE systems focus increasingly on tasks related to knowledge graphs as opposed
to taxonomies/ontologies, but they also employ a variety of diverse neurosymbolic approaches (patterns). This
status-quo is insufficiently covered by current KE methodologies and tools. Therefore, this area will require the
development of new methodologies and tools to cater for the variety of the neurosymbolic KE approaches. The
boxology-based patterns used in this paper could offer a valuable mechanism for dealing with the broad diversity of
the systems. In particular, extensions to the boxology notation (e.g., in terms of representing other system module
types, a richer set of relation types between system components) would be a line of work in itself and could foster
an even richer analysis and methodological support for such systems. Finally, better understanding what KE tasks
can be achieved with which patterns (and what are the benefits/challenges of each pattern) could provide further
methodological support for knowledge engineers.

Towards auditable knowledge engineering. Semantic structures developed through the KE process underpin a
variety of (often mission critical) modern intelligent systems. As such, the transparency of the process of their
creation is increasingly important for several stakeholders (e.g., from a technical, managerial or legal perspective).
Such transparency can be ensured by making knowledge engineering processes auditable. Yet, while our analysis
in this paper was rather narrow due to the exploratory nature of the original data set, it suggests that there are still
many gaps regarding transparency and auditability guidelines for SWeML Systems.

While auditability of AI systems in general is an active research area, current solutions fall short of the needs of
neurosymbolic (including SWeML) systems that underpin neurosymbolic knowledge engineering. First, at the level



12 M. Sabou et al. / Neurosymbolic Knowledge Engineering

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

of neurosymbolic systems, initial steps towards auditability have been made with design patterns and templates
[7, 41, 42] which enable a common understanding of overall data and processing workflows (i.e., the boxology
patterns demonstrated in this paper). These approaches are however very preliminary and still need to be adopted
at scale by system engineers and practitioners to reach their full potential. Second, in the area of purely machine
learning based systems, due to their deployment in high-risk use cases and various incidents [43], suggestions for
documentation templates of different components have emerged: Datasheets [44], ModelCards [45], FactSheets
[46] and MLOPs tools such as MLFlow3 are supporting low-level record keeping and tracing. However, the ma-
jority of these documentation templates is still artefact-based with low semantics and the integration of provenance
traces from different components is still an open question. Finally, semantic web technologies are associated with
increased explainability and context, but might also include negative biases [47] or lack documentation to enable
accountability [48], one of the ultimate goals of auditability. Yet, approaches for making semantic resources (and
their life-cycles) auditable were only weakly addressed in particular in comparison to ML systems. Therefore, excit-
ing research opportunities lie in extending auditability notions to neurosymbolic systems by potentially extending
existing work in the area of audible machine learning systems.

Clarifying the role of human agents. Knowledge engineering inherently involves human participants such as the
knowledge engineer that captures and formalises knowledge or (domain) experts whose knowledge is represented.
Therefore, in the changing landscape of knowledge engineering, there is a need to understand and represent the
interactions between machine learning models, knowledge engineering methods and human participants in complex
AI systems. However, there is still a lack of common understanding regarding the roles of humans, their necessary
expertise, and their authority in such systems.

There are, nevertheless, important initial works in this direction. Concretely, in the last years, the role of human
agents in neurosymbolic systems has gained attention, resulting in the introduction of two strategies to extend the
collection of proposed patterns of these systems. The first approach, introduced in [42] and extended in [49], focused
on the need to represent actors (agents, robots or humans) that initiate processes in neurosymbolic AI systems. Three
patterns were proposed in [49] that include an actor element, visualising the roles of different actors (i.e., initiating
or supporting a process) and their interactions. Additionally, a concrete use case was described exemplifying the
applicability of these patterns. The second strategy, proposed in [50], aimed to extend the original boxology [9] with
patterns of systems with human-in-the-loop (HiL). Two abstract HiL patterns were formalised, where the human
element acts as a feedback-provider or a feedback-receiver and contributes toward the enhancement of a KR/ML
component. The extended HiL patterns from [50] have already been successfully applied in describing a particular
hybrid AI system involving human participation in [51]. More broadly, the need for design patterns describing
the interactions between humans and AI has also been identified by the hybrid (human-AI) intelligence research
community. For instance, in [52] the authors proposed design patterns for representing the collaboration between
human agents and AI systems for a moral decision making domain. While the patterns focus on the interactions
between the agents, the original boxology of hybrid-AI systems [9] is used to describe requirements of the AI
elements. These initial works provide a basis for future work focusing on systematically analysing hybrid AI systems
involving human participants in order to better understand their components and requirements.

Assessing the importance of Large Language Models (LLMs) for Knowledge Engineering. When the initial
SWeMLS survey took place in October 2020, research on the utilisation of LLMs for Knowledge Engineering
was scarce, and present in only 4 out of 123 papers (less than 5%). With the rapid evolution and adaptation of LLMs
in the last few years, however, the landscape is changing very rapidly, marked with the emergence of vision papers,
e.g., [53] and special tracks on scientific venues4 on this topic. Therefore, an investigation of LLM-based patterns for
knowledge engineering is an open topic, which requires the collection of more recent data to be answered reliably.

We conclude with a set of limitations of this work. Firstly, the limitations of the broader study whose data we
reuse ([7]) also affect this work. In particular, given the broad area addressed by the study in [7], we needed to
perform study scoping to select a reasonable number of papers, with the potential side-effect that some relevant

3https://mlflow.org
4ESWC 2024: https://2024.eswc-conferences.org/call-for-papers-llms/

https://2024.eswc-conferences.org/call-for-papers-llms/
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papers were missed. Furthermore, during data analysis, new abstractions were introduced (e.g., sets of domains,
types of ML models, types of SW models) which we derived from the extracted data given the lack of such ty-
pologies in the literature. Therefore, we cannot claim that these are representative for the entire field. Finally, the
version of the boxology notation used was quite restrictive [9] (e.g., no possibility to represent standard processing
units, no distinction between training and prediction phases, representation of only input/output relations). As such,
several simplifying assumptions had to be taken when representing more complex systems with the boxology thus
potentially leading to the loss of some details. Additionally to these limitations, the analysis presented in this paper
represents an initial study with many aspects still to be explored (e.g., how the various characteristics of SWeML
systems for KE are mirrored by various application domains). Given also that the collected data dates back to 2010-
2020, more recent trends, in particular related to the use of LLMs for knowledge engineering, are not reflected in the
analysis at this point, but remain a topic of future work requiring the systematic collection of more recent papers,
from 2020 onwards.

Despite these limitations, we remain confident that this work captures key influences that neurosymolic systems
have on the knowledge engineering area (whether powered by LLMs or not) and will fuel further development and
discussions in the KE field as already apparent from early adopters of our ideas [54].
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Response letter

Dear Reviewers,

Thank you for the comprehensive reviews of our manuscript! We have highly appreciated the many insightful
comments provided which helped us to improve the quality of the submitted paper.

In this response letter, we reproduce the received reviews and explicitly number each concrete comment within the
reviews. Subsequently, we provide a response to each comment and highlight the corresponding updates in the paper
whenever applicable.

We sincerely hope that our revised paper and the substantial modifications we have incorporated into it render our
submission suitable for acceptance.

The Author Team

Review 1:

The authors investigate the emerging area of "Neuro-Symbolic Knowledge Engineering" by conducting a data-
driven analysis of the state of the art. In particular, they leverage a large scale Systematic Mapping Study, where
semantic technologies are initially used to identify 1986 relevant papers. These initial results are further narrowed
down to a corpus of 476 papers, using "selection and exclusion criteria".

R1C1: Question 1: Can the authors list these criteria and explain them? This would be an instrumental piece of in-
formation to understand how the data have been obtained and whether this part of the study - which seems qualitative
in nature - underwent any validation stage (e.g., inter-annotator agreement measure).

Answer: The inclusion/exclusion criteria as well as the entire paper selection process are explained in detail in the
survey paper under ref. [7] in the original (and current) submission. To make the current paper more self-contained
we added a short description of these criteria in Section 2, first paragraph.

The paper indicates that neuro-symbolic approaches are mostly focused on knowledge graphs, and only marginally
to ontologies and taxonomies, reflecting a change in the KE area of focus (this hardly comes as a suprising result,
as the topics distribution of a top-tier conference like ISWC suggests). The study described in this paper also shows
that neural networks are the most frequent method used for knowledge engineering tasks, which clearly correlates
with the prominent role that neural approaches play in machine learning these days. In this regard, the "elephant in
the room" here is Large Language Models (LLMs): as this fairly recent paper shows [1], there’s an increasing trend
of using LLMs as knowledge bases [2], or as sources to construct/complete knowledge graphs, which are typical
KE tasks, as argued by the authors of this manuscript, which leads me to another major point:

R1C2: Question 2: Can the authors "unpack" the category of "neural networks", and address the impact that LLMs
are specifically having in performing/supporting KE tasks? Introducing such key information would help to make
the study described in the paper more relevant and useful for the community.

Answer: Since the original data collection for the survey [7] was conducted before the great interest and uptake
of LLMs (Oct 2020), we only identified 4 out of the 123 SWeMLS KE papers as using LLMs (specifically: BERT).
Although understanding the impact of LLMs on KE practices is an exciting and timely topic, it is not feasible based
on the data that we use for this paper. Therefore, we see this as an open challenge for our future work to assess
the importance of LLMs for Knowledge Engineering. Indeed, the survey protocol developed for [7] could provide
a basis for systematically collecting more recent papers relevant for the use of LLMs in knowledge engineering.
For this paper, we added a discussion on LLMs and KE both (a) as an open challenge for future work and (b) as a
limitation of the current analysis in Section 7.
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Other issues:

R1C3: p.3, line 21: it can be misleading to put "text" and "images" alongside "embeddings" as examples of
"non-symbolic data", as opposed to symbolic structures like "semantic entities or relations". Textual elements, i.e.,
"words" are typically considered symbolic, whereas their corresponding vectorial representations are not. A similar
argument holds for images. I’m assuming that the authors are implicity referring to sub-symbolic representations of
text and images, but this should be clarified.

Answer: The exact distinction between symbolic and non-symbolic data is a challenging one to be made. In fact,
in this respect, we strictly follow the views of van Harmelen’s boxology paper that introduced this distinction and
discussed it in detail. While reproducing that in-depth discussion is beyond the scope of this paper, we added the
following sentence to Section 3.1 in order to bring further clarification to this topic and also direct interested
readers to the original discussion of this aspect: "Note that the distinction between symbolic and non-symbolic
representation is a reflection of "model-based" vs. "model-free" representations as explained in detail in [9]."

R1C4: p.3, line 40: although it is clear why the 123 papers are more relevant for the authors to analyze, it seems
interesting to also understand which applications areas "Neuro-Symbolic Knowledge Engineering" is emerging
from. Details about the papers on the domain-specific tasks (incidentally, the majority of the initially selected 476
papers!) would be quite interesting - especially to practitioners.

Answer: We would like to clarify that only 127 papers from the initially selected 476 papers are focusing on the
tasks producing Semantic Web artefacts (e.g., ontology, knowledge graphs). From the 127 papers, we excluded four
of them since the main tasks are domain specific, which leads to the final number of 123 papers. We updated the
relevant text in Section 2 (last paragraph) for clarity.

R1C5: p.4, line 31-41: turning the bullet points into a table may improve the readability of the paper. In fact, as one
proceeds with the following sections, and reads about the patterns, it feels natural to go back to the bullet points and
consult them.

Answer: We have considered the reviewer’s suggestion to convert the bullet list into a table. Nevertheless, we are
concerned that having an additional table for explaining the layers of Fig. 2 would have the opposite effect and
decrease the readability of the section instead. Therefore, we did not make any changes to this part of the paper.

References:

[1] Allen, B.P., Stork, L. and Groth, P., 2023. Knowledge Engineering using Large Language Models. arXiv preprint
arXiv:2310.00637.

[2] Petroni, F., Rocktäschel, T., Lewis, P., Bakhtin, A., Wu, Y., Miller, A.H. and Riedel, S., 2019. Language models
as knowledge bases?. arXiv preprint arXiv:1909.01066.

Review 2:

This paper provides a summary of the knowledge engineering field from the point of view of neuro-symbolic
systems.

The paper offers a very interesting overview of the field. The manuscript is well-written and easy to understand. I
have a couple of minor comments that can be easily implemented.

Comments/Questions:

R2C1: Page 3, line 41: What were the criteria for inclusion/exclusion?

Answer: Please refer to Reviewer 1/comment 1 (R1C1) above for a detailed answer.

R2C2: Page 2: The explanation of the patterns should probably be separated from the data collection section. Also,
I would love to see a table with the columns: paper title, short description, and boxology notation (for a few papers).
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It would be a nice way to sum up the work (basically, it would mean taking Figs. 3-6 and making a table out of them
with examples of papers).

Answer: We separated the explanation of the patterns and moved it to the beginning of Section 2. Additionally, we
added Table 1 (frequent patterns for knowledge engineering) and Table 2 (specific patterns for knowledge engineer-
ing). Both tables contain the relevant papers’ reference, title, short description and boxology notation.

R2C3: In addition to this, a few paragraphs of details on the boxology would help a new reader better understand
the context of this work.

Answer: We shifted the existing description to Section 3.1 and extended it, to include the textual notation for some
patterns.

R2C4: Figure 2 (and Page 4, line 31). I read "476 patterns" but "476" is also the number of papers. This was
confusing to me: I am wondering if I correctly understood if there is a distinction (since we are focusing on the 123
KE papers here).

Answer: Indeed, we would like to convey that there are 476 papers (and not patterns) from the original dataset.
Further, we would like to convey the proportion between the KE-specific and overall papers per patterns. We have
updated the figure and its description accordingly.

R2C5: Page 7: Adding some papers for each pattern would be interesting.

Answer: We provided such additional examples in Table 1 and Table 2.

R2C6: Page 8:Some of these categories might overlap, am I right? For example, NN models can be used for
Classification.

Answer: The reviewer is right that some of the categories in the figures on page 8 were overlapping. To avoid
confusion, we decided to reduce the number of ML categories to three: classical ML, Deep Leaning and Graph
Deep Learning. Figure 11 provides now the analysis in terms of these three ML categories.

R2C7: Figure on page 8 (there is no number) (also, the figure’s bottom part has been cut out from the paper).

Answer: We have numbered the figure and made sure that all labels are fully visible.

R2C8: Fig. A) Related to the above point, I would have put Poincare Embeddings into the Embeddings categories.
If the author does not want to do this, to what category were methods like "Hyperbolic Embeddings" added? I
might have just misunderstood the plot, and papers tagged with Poincare Embeddings are also tagged as standard
Embeddings. If so, I would clarify.

Answer: After we have redrawn these figures where the “Poincare Embeddings" were mentioned by relying on a
simplified classification of ML models (see R2C6), this comment is obsolete.

R2C9: Fig B) I am not sure if this is possible, but this figure would probably need normalization with respect to the
total number of paper categories (as deep NN methods became more popular in the last 6/7 years)

Answer: Figure 11/right side contains now a normalised frequency of ML models for the last 5 years of our analysis.

R2C10: I do not know if I missed this while reading, but is there any difference in terms of the proportion of
papers concerning the scientific field? For example, I would expect drug prediction papers to use knowledge graph
embedding techniques mostly.

Answer: Some correlations between the application domains of the papers and various aspects of the SWeML
systems reported in those papers are provided in the overall survey [7]. For example, we investigated the usage
of the three major ML categories across the 6 largest application domains and found that Classical ML is most
frequent in Natural Sciences; that the relative share of DL models is the greatest in News&Social Media and that
models from Graph DL are notably more often applied in the General Domain compared to their usage in specific
domains. Although these findings were interesting, we struggled with data sparseness already within the large
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dataset. Therefore, we refrained from repeating this analysis in this paper, where the data set is much smaller and
given the page constraints for the publication. Having said that, such an analysis could be attempted as part of
future work.

R2C11: I would appreciate seeing a Limitations section where the authors describe what might have been left out
from the analysis and for what reasons (e.g., due to the automated extraction pipeline).

Answer: We added considerations about limitations of this work in the concluding paragraph of the paper.

Review 3:

This is a paper that examines knowledge engineering in the age of neuro symbolic AI. It is an interesting project
that surveys various sources to identify emerging patterns. The analysis presents different regimes and patterns,
drawing meta-level conclusions. The project shows promise, but lacks sufficient detail to understand the specific
knowledge engineering outcomes: such as knowledge bases and formulas. Given that this field is in its early stages,
such engineering may have limited depth, moreover.

I would expect emerging technical work to appear at conferences like NeurIPS and ICML, rather than the suggested
venues mentioned by the authors.

R3C1: Regardless, it would be helpful to see concrete examples of the logical knowledge considered in these papers.
How extensive is its coverage? What concepts does it encompass? How much overlap exists? Currently, there is not
enough technical detail. It can be expected that the authors will be able to address this.

Answer: In our initial submission, we deliberately excluded discussing the semantic web resources used in the
papers due to space considerations. However, we understood the concerns from Reviewer 3 that an analysis and
discussion on this topic is necessary. Therefore, we have added Section 5 on this topic to provide brief and concise
information on this subject.

R3C2: Also, it would be valuable to understand their perception of the level of sophistication and maturity in this
field, and to provide examples of logical and domain knowledge considered in these papers.

Answer: Overall, the use of neurosymbolic systems to support knowledge engineering is an emerging and novel area.
We estimate the level of sophistication as low, this paper being the first one, to the best of our knowledge, that tries
to systematically analyse the various types of system patterns employed for knowledge engineering. Our analysis
of the data has also shown that low maturity, transparency and auditability characterises current neurosymbolic
systems used for knowledge engineering (and also other tasks). For “examples of logical and domain knowledge"
please see R3C1.

R3C3: Additionally, there is related work by Frank van Hermelen on design patterns in neurosymbolic AI, which
may be worth exploring connections to: https://arxiv.org/pdf/2102.11965.pdf.

Answer:Yes, we agree and in fact the paper suggested by the reviewer was already mentioned as reference [41] in
the original (and the current) submission.
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