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Abstract. Distributed sparse block codes (SBCs) exhibit compact representations for encoding and manipulating symbolic data
structures using fixed-width vectors. One major challenge however is to disentangle, or factorize, the distributed representation
of data structures into their constituent elements without having to search through all possible combinations. This factorization
becomes more challenging when SBCs vectors are noisy due to perceptual uncertainty and approximations made by modern
neural networks to generate the query SBCs vectors. To address these challenges, we first propose a fast and highly accurate
method for factorizing a more flexible and hence generalized form of SBCs, dubbed GSBCs. Our iterative factorizer introduces
a threshold-based nonlinear activation, conditional random sampling, and an {..-based similarity metric. Its random sampling
mechanism, in combination with the search in superposition, allows us to analytically determine the expected number of decod-
ing iterations, which matches the empirical observations up to the GSBC’s bundling capacity. Secondly, the proposed factorizer
maintains a high accuracy when queried by noisy product vectors generated using deep convolutional neural networks (CNNs).
This facilitates its application in replacing the large fully connected layer (FCL) in CNNs, whereby C trainable class vectors, or
attribute combinations, can be implicitly represented by our factorizer having F-factor codebooks, each with V/C fixed codevec-
tors. We provide a methodology to flexibly integrate our factorizer in the classification layer of CNNs with a novel loss function.
With this integration, the convolutional layers can generate a noisy product vector that our factorizer can still decode, whereby
the decoded factors can have different interpretations based on downstream tasks. We demonstrate the feasibility of our method
on four deep CNN architectures over CIFAR-100, ImageNet-1K, and RAVEN datasets. In all use cases, the number of parame-
ters and operations are notably reduced compared to the FCL.
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1. Introduction

Vector-symbolic architectures (VSAs) [1-5] are a class of computational models that provide a formal framework
for encoding, manipulating, and binding symbolic information using fixed-size distributed representations. VSAs
feature compositionality and transparency, which enabled them to perform analogical mapping and retrieval [6—
8], inductive reasoning [9, 10], and probabilistic abductive reasoning [11, 12]. Moreover, the VSA’s distributed
representations can mediate between rule-based symbolic reasoning and connectionist models that include neural
networks. Recent work [11] has shown how VSA, as a common language between neural networks and symbolic
Al can overcome the binding problem in neural networks and the exhaustive search problem in symbolic Al
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In a VSA, all representations—from atoms to composites—are high-dimensional distributed vectors of the same
fixed dimensionality. An atom in a VSA is a randomly drawn i.i.d. vector that is dissimilar (i.e., quasi-orthogonal)
to other random vectors with very high probability, a phenomenon known as concentration of measure [13]. Com-
posite structures are created by manipulating and combining atoms with well-defined dimensionality-preserving
operations, including multiplicative binding, unbinding, additive bundling (superposition), and permutations. The
binding operation can yield quasi-orthogonal results, which, counterintuitively, can still encode semantic informa-
tion. For instance, we can describe a concept in a scene (e.g.,ablack circle) with two factors (color and shape)
by binding quasi-orthogonal atomic vectors (Xpjack ® Xcircle)- The resulting product vector is quasi-orthogonal to all
other possible vectors (atomic and composite). Yet, decomposing it into its factors (Xpjack and Xcircle) reveals the
semantic relation between alblack circle andablack square since both include Xy ck.

However, decomposing, or disentangling, a bound product vector into its factors is computationally challenging,
requiring checking all the possible combinations of factors. Extending the previous example from two to F factors,
each factor f having a codebook of M, codevectors, there are H;:1 M possible combinations to be searched
in the product space for factorizing a product vector. To alleviate this hard combinatorial search problem, rapid
iterative approaches were proposed such as resonator networks [14, 15] and follow-up stochastic factorizers with
nonlinear activation [16]. However, these existing solutions can only infer the factors of dense bipolar product
vectors (i.e., each vector element is a Rademacher random variable) and face challenges with other types of VSA
representations such as sparse block codes (SBCs) [17-19]. SBCs exhibit compact memory footprint, ideal variable
binding properties [19], high information capacity for associative memories [20-22], biological plausibility [23-26],
and amenability for implementation on emerging neuromorphic hardware [27, 28]. Motivated by these key aspects
of SBCs, there is a need to come up with a rapid iterative approach to accurately factorize SBC product vectors.

This paper provides the following contributions, which are divided into two main parts. In Part I, for the first time,
we propose an iterative block code factorizer (BCF) that can reliably factorize blockwise distributed product vectors.
The used codebooks in BCF are binary SBCs, which span the product space, while BCF can factorize product
vectors from a more generalized sparse block code (GSBC). Hence, factorizing binary SBCs is a special case.
BCEF introduces a configurable threshold, a conditional sampling mechanism, and a new {..-based similarity search
operation. During the iterative decoding, the novel sampling mechanism induces a random search in superposition
over the product space if no confident solution is present. BCF improves the convergence speed of the state-of-the-
art stochastic factorizer [16] on a large problem size of 10° by up to 6x. To gain a deeper understanding of BCF’s
iterative search in superposition, we leverage its configurable threshold and sampling mechanism to configure it as
an unconditional sampler that randomly searches over the product space. This allows us to determine the expected
number of decoding iterations analytically, which matches the empirical observations when operating within the
GSBC’s bundling capacity.

In Part II, we present an application for BCF that reduces the number of parameters in fully connected layers
(FCLs). FCLs are ubiquitous in modern deep learning architectures and play a major role by accounting for most
of the parameters in various architectures, such as transformers [29, 30], extreme classifiers [31, 32], and CNNs for
edge devices [33]. Given an FCL with respective input and output dimensions D; and D,,, we can replace its trainable
parameters W € R? %P by a BCF with F codebooks of fixed parameters, each X/ € {0, 1}2% VP:_ The structure of
the codebooks is naturally given when the product space is defined by semantic attributes (e.g., in RAVEN [34]), or
can be arbitrarily defined when no semantic attributes are provided (e.g., for natural images in ImageNet-1K [35]).
To map sensory inputs to GSBC product vectors, we train deep convolutional layers with a novel blockwise additive
loss that can directly use BCF in place of an FCL classifier. Our BCF reduces the total number of parameters across a
wide range of deep CNNs and datasets by 0.5-44.5% while maintaining a high accuracy within 0-4.46% compared
to the baseline CNNs using the large FCL. Our BCF also lowers the computational cost of the classifier layer by
55.2-86.7% with respect to FCLs.

2. VSA Preliminary

VSAs define operations over (pseudo)random vectors with independent and identically distributed (i.i.d.) compo-
nents. Computing with VSAs begins by defining a basis in the form of a codebook X := {x1,Xa, ..., Xy} := {x;}}1,.



If the dimension D, of two randomly drawn vectors of the space is sufficiently large, they are highly likely to have an
almost-zero similarity, i.e., they are quasi-orthogonal [5]. VSAs use three primary operations—bundling, binding,
and permutation—that form an algebra over the space of vectors. The bundling represents a set of vectors via vector
addition with a possible nonlinearity, resulting a vector that is similar to all vectors from the set. In contrast, binding
and permutation yield result vectors that are dissimilar to its input vectors. Combined with a similarity metric,
these operations support various cognitive data structures: variable binding, sequence, and hierarchy. See [36] for a
review.

For example, consider a VSA model based on the bipolar vector space [2], i.e., x € {—1, +1}D”. One can define
binding and unbinding in this vector space as the Hadamard (i.e., elementwise) product. The similarity between two
vectors in the space is typically measured using the cosine similarity metric. A possible bundling operation is the
elementwise sum followed by the sign function, setting all negative elements to —1 and the positive to +1. To keep
representations bipolar, elements with a sum equal to zero are randomly set to —1 or +1.

As an alternative, binary sparse block codes (binary SBCs) [18] induce a local blockwise structure that exhibits
ideal variable binding properties [19] and high information capacity when used in associative memories [20-22].
In binary SBCs, the D,-dimensional vectors are divided into B blocks of equal length, L = D,/B, where only
one element per block is set to 1. The vectors can either be described with a D,-dimensional binary SBC vector
(denoted as x), or with a B-dimensional offset vector where each element indicates the index of the nonzero element
within each block (denoted as x). The vectors are initialized by randomly setting one element in each block to 1.
The bundling of two or more vectors is defined as their elementwise addition, followed by a selection function that
retains the sparsity by setting the largest element of each block to 1 and the remaining elements to 0. The binding
of two vectors is the elementwise modulo-L sum of their offset representation. Similarly, unbinding is defined
using the modulo-L difference. Both binding and unbinding preserve dimensionality and sparsity. A typical choice
for the similarity metric is the normalized dot-product, which counts the number of overlapping elements of two
vectors [37].

3. Related Work
3.1. Factorizing distributed representations

The resonator network [14, 15] avoids brute-force search through the combinatorial space of possible factor-
ization solutions by exploiting the search in superposition capability of VSAs. The iterative search process con-
verges empirically by finding correct factors under operational capacity constraints [15]. The resonator network
can accurately factorize dense bipolar distributed vectors generated by a two-layer perceptron network trained to
approximate the multiplicative binding for colored MNIST digits [14]. Alternatively, the resonator network can also
factorize complex-valued product vectors representing a scene encoded via a template-based VSA encoding [38] or
convolutional sparse coding [39]. However, the resonator network suffers from a relatively low operational capacity
(i.e., the maximum factorizable problem size given a certain vector dimensionality), and the limit cycles that impact
convergence. To overcome these two limitations, a stochastic in-memory factorizer [16] introduces new nonlin-
earities and leverages intrinsic noise of computational memristive devices. As a result, it increases the operational
capacity by at least five orders of magnitude, while also avoiding the limit cycles and reducing the convergence time
compared to the resonator network.

Nevertheless, we observed that the accuracy of both the resonator network and the stochastic factorizer notably
drops (by as much as 16.22%) when they are queried with product vectors generated from deep CNNs processing
natural images (see Table 4). This challenge motivated us to switch to alternative block code representations instead
of dense bipolar, whereby we can retain high accuracy by using our BCF. Moreover, compared to the state-of-
the-art stochastic factorizer, BCF requires fewer iterations irrespective of the number of factors F (see Table 2).
Interestingly, it only requires two iterations to converge for problems with a search space as large as 10%.



3.2. Fixing the final FCL in CNNs

Typically, a learned affine transformation is placed at the end of deep CNNgs, yielding a per-class value used for
classification. In this FCL classifier, the number of parameters is proportional to the number of class categories.
Therefore, FCLs constitute a large portion of the network’s total parameters: for instance, in models for edge de-
vices, FCLs constitute 44.5% of ShuffleNetV2 [40], or 37% of MobileNetV2 [41] for ImageNet-1K. This dominant
parameter count is more prominent in lifelong continual learning models, where the number of classes quickly
exceeds a thousand and increases over time [42].

To reduce the training complexity associated with FCLs, various techniques have been proposed to fix their weight
matrix during training. In turn, an FCL is replaced by a Hadamard matrix [43], or a cheaper Identity matrix [33],
or vertices of a simplex equiangular tight frame [44]. Although partly effective, due to square-shaped structures,
these methods are restricted to problems in which the number of classes is smaller than or equal to the feature
dimensionality, i.e., D; = D,. Methods that simply draw class vectors randomly distributed over a hypersphere [45,
46] were proposed to address this limitation. However, these methods still need to store the individual class vectors,
which imposes the FCL’s conventional cost of O(D; - D,) for memory storage and compute complexity during
training and inference.

Our BCF with two factors can reduce the memory and compute complexity to O(D; - +/D,). This is done by using
randomly-drawn distributed binary SBCs that form an intermediate product vector space whose dimensionality (D)
is notably lower than the number of classes (D, < D,), but high enough such that a large number of classes can be
expressed thanks to the supplied quasi-orthogonality. We show that the product vector space can be built either at
the output of the last convolutional layer directly (i.e., its dimensionality is set by the feature dimension D, = D;),
or at the output of a smaller FCL as a projection layer (i.e., its dimensionality can be chosen). This flexibly enables
a trade-off between the number of removable parameters and obtainable accuracy.

4. Part I: Factorization of Generalized Sparse Block Codes

This section presents our first contribution: we propose a novel block code factorizer (BCF) that efficiently finds
the factors of product vectors based on block codes. We first introduce generalized sparse block code (GSBC), a
generalization of the previously presented binary SBC. We present corresponding binding, unbinding, and bundling
operations and a novel similarity metric based on the £..-distance. We then continue to the exposition and experi-
mental evaluation of our BCF, which is capable of fast and accurate factorization of GSBC product vectors.

4.1. Generalized sparse block codes (GSBCs)

Like binary SBCs, GSBC:s divide the D ,-dimensional vectors into B blocks of equal length L = D, /B. However,
the individual blocks are not restricted to be binary or sparse. The requirements imposed upon the vectors are
that their elements are in R™, and each block has a unit £1-norm. Binary SBCs satisfy both constraints and are
valid GSBCs. Fig. 1 illustrates an example of a binary SBC and a GSBC vector. The blockwise distribution of
the GSBC representation can be interpreted as blockwise probabilistic mass functions, serving as a proxy for the
binary SBC vector in this example. Neural networks can produce such GSBC product vectors. Besides their benefits
in the integration with neural networks, the GSBC representations inside BCF enable more accurate and faster
factorization.

The individual operations for the GSBCs are defined as follows:

Binding/Unbinding We exploit general binding and unbinding operations in blockwise circular convolution and
correlation to support arbitrary block representations. Specifically, if both operands have blockwise unit £;-norm,
the result does as well.

Bundling The bundling of several vectors is defined as their elementwise sum followed by a normalization opera-
tion, ensuring that each result block has unit £;-norm.



Table 1

Comparison of operations of binary SBCs and our GSBCs. All operations except for the similarity are applied blockwise.

Binary SBCs[18] GSBCs (ours)
Lo Modulo-L sum Blockwise
Binding (®) Lo R .
of nonzero indices circular convolution
Lo Modulo-L difference Blockwise
Unbinding (©) Lo . .
between nonzero indices circular correlation
Bundling () Argmax of sum Sum & normalization
L {oo-based sim.
Similarity Dot-product

or dot-product

{oo-based Similarity We propose a novel similarity measure based on the {,-norm of the elementwise difference
between two GSBC vectors x; and X :

Soo(Xin X)) = 1 — Lo (Xi — X;), M

with £, (a) = max; |a[i]|, where a[i] denotes the i-th element of a vector a.

For any GSBC vectors a and b, it holds that 0 < s (a — b) < 1. Therefore, our novel similarity metric satisfies
0 < swo(a,b) < 1, whereby equality on the right-hand side holds if, and only if, a = b. Table 1 compares the
operations of the GSBCs with respect to the binary SBCs.

4.2. Factorization problem

We define the factorization problem for GSBCs and our factorization approach for two factors. Applying our
method to more than two factors is straightforward; corresponding experimental results will be presented in Sec-
tion 4.6.

Given two codebooks', X':={x!} and X?:={x?}¥2 , and a product vector p = x! ® X? formed by binding two
factors from the codebooks, we aim to find the estimate factors X! € X' and %2 € X2 that satisfy

p=x'®x% 2

A naive brute-force approach would compare the product vector (p) to all possible combinations spanned by the
product space P = X! @ X? := {x! ®x},x] ® X3,...,X};, ® X3, }. This results in a combinatorial search problem
requiring M - M similarity computations. BCF can notably reduce the computational complexity.

4.3. Block code factorizer (BCF)

Here, we introduce our novel BCF that efficiently finds the factors of product vectors based on GSBCs, shown
in Fig. 1. The product vector decoding begins with initializing the estimate factors x!(0) and x2(0) by bundling all
vectors from the corresponding codebooks. Then, the estimate factors are iteratively updated through the following
steps.

Step 1: Unbinding. At the start of iteration ¢+ > 1, the estimate factors from the previous iteration ¢t — 1 are
unbound from the product vector by using blockwise circular correlation:

X't)=pox(t—1) 3
() =pox'(t—1). )

'In our experiments, the codebooks consist of binary SBC codewords, but they could be GSBC vectors too.
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Fig. 1. Block code factorizer (BCF) for F = 2 factors. It can factorize both synthetic binary SBC product vectors and GSBC product vectors (p)
which might result from a neural network mapping.

Step 2: Similarity search. Next, we query the associative memory, containing the codebook X/ for factor f with
the unbound factor estimates. Here, we deploy our novel £..-based similarity as an effective associative search.
At iteration ¢, this yields a vector of similarity scores a’(¢) € RMs for each factor f. The i-th element in a/(¢) is
computed as:

a’ (1)[i] = s00(X (1), x]). Q)

We observe that a conventional dot-product similarity causes a notable performance drop, as shown in Fig. 3.

Step 3: Sparse activation and conditional random sampling. Recent work on stochastic factorizers [16]
demonstrated that applying a threshold function to the elements of the similarity vector can improve convergence
speed and operational capacity. We deploy a similar idea in our BCF. In this step, the previously computed similar-
ities are compared against a fixed threshold 7 € R™. Similarity values that are larger than the threshold propagate
forward, whereas lower ones get zeroed out:

a'’/ (1) = thresh(a’ (1); T) (0)

afi], ifalij>T

thresh(a; T')[i] = 0 otherwise

@)

This nonlinearity allows us to focus on the most promising solutions by discarding the presumably incorrect
low-similarity ones. However, thresholding entails the possibility of ending up with an all-zero similarity vector,
effectively stopping the decoding procedure. To alleviate this issue, upon encountering an all-zero similarity vector,
we randomly generate a subset of equally weighted similarity values:

a’ (1), ifa’(1)#£0

a//f ([) _ .
Q,4n4, Otherwise,

®)

where a,,,; € RY is a vector in which A-many randomly selected elements are set to 1/A. In combination with
step 4 (weighted bundling), the conditional random sampling given by Eq. (8) yields an equally weighted bundling
of A randomly selected codewords, where A can be interpreted as the sampling width.

The novel threshold and conditional sampling mechanisms are simple and interpretable, yet they lead to faster
convergence. The stochastic factorizer [16] relied on various noise instantiations at every decoding iteration. The
necessary stochasticity was supplied from intrinsic noise of phase-change memory devices and analog-to-digital
converters of a computational analog memory tile. Instead, BCF remains deterministic in the decoding iterations
unless all elements in the similarity vector are zero, in which case it activates only a single random source. This
can be seen as a conditional restart of BCF using a new random initialization. The conditional random sampling
could be implemented with a single random permutation of a seed vector in which A-many arbitrary values are set
to 1/A. The conditional random sampling mechanism is also interpretable, in the sense that it allows to analytically
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Fig. 2. Threshold and sampling width of Bayesian optimization for D, = 512, B =4, and F = 2.

determine the expected number of decoding iterations, subject to the bundling capacity (i.e., the maximum number
of vectors that can be bundled and reliably retrieved). Section 4.7 provides empirical insights.

Step 4: Weighted bundling. Finally, we generate the next factor estimate x/(¢) as the normalized weighted
bundling of the factor’s codevectors:

g — X
SR ST v

The codevectors {x} }iﬂill are GSBCs with unit ¢;-norm blocks; hence, dividing the weighted bundling by the sum
of the weights yields valid GSBCs.

Step 5: Convergence detection. The iterative decoding is repeated until BCF converges or a predefined maximum
number of iterations (N) is reached. We define the maximum number of iterations such that BCF does at most as
many similarity searches as the brute-force approach [16]:

F
_ My
. H‘;,l v (10)
Ef:l My

The convergence detection mechanism is based on an additional, fixed threshold. Decoding is stopped as soon as
both similarity vectors (a'(z) and a(¢)) contain an element that exceeds a predefined detection threshold value

(Tl16]. We set it to T, = 0.8 for synthetic product vectors and 7. = 0.5 for noisy product vectors from deep
neural networks.

4.4. Hyperparameter optimization

This section explains the methodology for finding optimal BCF hyperparameters to achieve high accuracy and
fast convergence. The optimal configuration is denoted by ¢* = (T*,A*), corresponding to the optimal threshold
and sampling width. As an automatic hyperparameter search method, we employ Bayesian optimization [47].

The loss function is defined as the error rate given by the percentage of incorrect factorizations out of 512 ran-
domly selected product vectors. To put a strong emphasis on fast convergence, we reduced the maximal number
of the iterations to N’ = 0.05N for all Bayesian optimization runs. The error rate is an unknown function of the
hyperparameters, modeled as a Gaussian process with a radial basis function kernel. Hyperparameter sampling is
done using the expected improvement acquisition function.

For each problem (F, D, H;:1 My, B), we run five separate hyperparameter searches, each of which tests 200
different hyperparameter combinations restricted to the domains A € [0, M,] and T € [0, 1]. Finally, we select the
hyperparamters with the lowest error rate at the default maximum number of iterations (N).
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Fig. 3. Factorization accuracy (left) and number of iterations (right) of various BCF configurations on synthetic (i.e., exact) product vectors for
different problem sizes (]_[]‘L1 My). We set D), = 512, F = 2, and B = 4. The maximum operational capacity is marked with a cross. Problem
sizes exceeding the operational capacity are marked with dashed lines which face an accuracy lower than 99%. BCF configured with binary SBC
operations (in blue) cannot solve any of the displayed problem sizes at the required accuracy.

Fig. 2 shows the resulting threshold (7°) and sampling width (A) over various problem sizes for D, = 512, B = 4,
and F = 2. For a range of problem sizes (103-~10%), BCF does not require the threshold and sampling dynamics:
it sets the threshold and the sampling width to 0. For larger problem sizes (>10°), the threshold T grows with the
problem size. This can be explained by the fact that querying larger codebooks is likely to activate more codevectors,
which will be bundled. As such, we expect a higher interference between likely incorrect low-similarity solutions
and promising high-similarity solutions. A higher threshold effectively reduces the number of bundled vectors,
reducing interference. Similarly, the sampling width (A) grows until a problem size of 4,000,000, where it sharply
declines. The sharp decline was observed for all investigated problem settings (¥, D), B) and might stem from the
limited bundling capacity.

4.5. Experimental setup

We evaluate the performance of our novel BCF on randomly selected synthetic product vectors. For each problem
(F, Dy, H;Zl My, B), we assess the factorization accuracy and the number of iterations by averaging over 5000
experiments. In each experiment, we randomly select one vector from each of the F-many codebooks, bind the
selected vectors together to form a product vector, then use the product vector as the input into BCF. In this section,
the queries are always binary SBCs. In contrast, the representations inside BCF (i.e., factor estimates at any step
of the decoding loop) do not have this restriction imposed upon them unless specified otherwise. The operational
capacity is defined as the largest problem size for which BCF achieves an accuracy higher than 99% [15].

4.6. Comparative results

Fig. 3 compares the accuracy (left) and the number of iterations (right) of various BCF configurations with
D, = 512 and F = 2. Dotted lines indicate a less than 99% factorization accuracy. Starting with binary SBC
vectors and the dot-product similarity metric, we can see that this BCF configuration fails to solve any problem of
size larger than 10% accurately. The operational capacity increases to 4.2 - 10® when relaxing the sparsity constraint
of binary SBCs by allowing for GSBC representations inside BCF. However, the required iterations are still high,
requiring almost as many searches as the brute-force approach. The introduction of the £,.-based similarity increases
the operational capacity by more than an order of magnitude. We can also notice a drastic reduction in the number of
iterations necessary for converging to the correct solution. For problem sizes up to 104, BCF needs only 2 iterations
to converge, the minimum possible number of iterations to detect convergence reliably. However, as the problem
size goes beyond 1.2 - 103, BCF encounters limit cycles and spurious fixed points, hindering its convergence to
the correct solution [15]. To this end, we introduce the threshold nonlinearity coupled with conditional random
sampling. With these new dynamics, BCF further increases the operational capacity by over an order of magnitude
to 5 - 10°.

Next, we analyze BCF’s decoding performance for a varying number of blocks (B), vector dimensions (D)), and
numbers of factors (F). Fig. 4 shows the number of iterations of BCF for F = 2 (left) and F = 3 (right) factors
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when varying the vector dimension. For both two and three factors, the operational capacity and convergence speed
increase with growing vector dimensionality. As we move from two to three factors, the operational capacity remains
approximately the same while the number of decoding iterations increases. However, an increase in the number of
iterations does not directly lead to higher computational cost as each iteration requires fewer search operations
(F - Zf M) for larger F due to the F-root dependence of M. For example, at D, = 512 and H;Zl My = 109,
BCF at F = 2 requires, on average, 15.73 iterations corresponding to a total of 31, 460 searches, whereas at F = 3
it requires, on average, 85.17 iterations and 25, 551 searches.

Fig. 5 shows BCF’s performance for a fixed D, while varying the number of the blocks (B) for two and three
factors. For a very small number of blocks (B = 2), the operational capacity lies at approximately 103 for both
F = 2 and F = 3. The operational capacity increases to around 5 - 10° when B = 4. Further increasing the
number of blocks (B > 8) exhibits an operational capacity beyond 10%, the largest problem size we measured. The
convergence speed peaks at B = 4 and B = 8 blocks, gradually decreasing as the vectors get denser. Overall, the
experimental results shown in Fig. 4 and Fig. 5 demonstrate the broad applicability of our BCF: it accurately solves
factorization problems within the computational constraints for a wide range of problem sizes, block sizes (B > 4),
and number of factors (F € {2,3}).

Finally, we compare our BCF with the state-of-the-art stochastic factorizer [16] operating with dense bipolar
vectors. We fix the problem size to 10 and compare the number of iterations for three configurations according to
those featured in [16], namely F' = 2 with D, = 1024, F = 3 with D, = 1536, and F = 4 with D, = 2048. We
configure our BCF with B = 4 blocks. Table 2 summarizes the results. Both factorizers achieve > 99% accuracy
across all configurations, whereby our BCF requires up to 6 x fewer iterations.

4.7. Ablation study
This section provides more insights into BCF’s two main hyperparameters: the threshold (7') and the sampling
width (A).

Effect of sampling width in an unconditional random sampler The sampling width (A) determines how many
codevectors will be randomly sampled and bundled in case the thresholded similarity is an all-zero vector. Intuitively,
we expect too low sampling widths to result in a slow walk over the space of possible solutions. Alternatively,



Table 2

Comparison between stochastic factorizer [16] and our BCF at problem size 106

Number of iterations

F D Dense bipolar [16] BCF (B = 4)
1024 68.47 11.16
1536 72.48 52.91
2048 157.17 89.05

2001 1\ —— Random sampler, D,=512
é 400 A ‘\ Random sampler, D,=1024
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Fig. 6. Number of iterations when BCF is configured as an unconditional random sampler with varying sampling width (A). We set B = 4,
F =2,and M1 = M3 = M = 1000.

suppose the sampling width is too large (e.g., larger than the bundling capacity). In that case, we expect high
interference between the randomly sampled codevectors to hinder the accuracy and convergence speed due to the
limited bundling capacity.

To experimentally demonstrate this effect, we run BCF with F = 2 in an operational mode that corresponds
to unconditional random vector sampling. Concretely, we fix the sampling width (A), generate the initial guess as
a bundling of A-many randomly selected codevectors, and set both the sparsification threshold (7') and the con-
vergence detection threshold (7.) to the inverse sampling width (1/A). With this configuration, we expect BCF to
execute a random walk over the solution space with sampling width determining the number of solutions that are
simultaneously evaluated. If the procedure samples the correct solution and the interference from sampled incorrect
solutions is low, the correct factor triggers the threshold, and the factorization stops. As a result, at every iteration,

we test M, - A"~ combinations per factor f. The expected number of iterations for this procedure is:

F
Bl =
(Zf:l Mf) A

(11)

where the numerator reflects the overall problem size, and the denominator is the number of combinations the
random sampler tests per iteration. With F = 2 factors and codebooks of equal size M1 = My = M, the expected
number of iterations equals M/(2A).

Fig. 6 shows experimental results with this factorizer mode for F = 2, M = 1000, varying D, between 512 and
1024. The expected number of iterations corresponds to the expression M/(2A). All presented configurations reach
> 99% accuracy, but in a different number of iterations. For small sampling widths, the empirical results match the
expectation. As the sampling width increases, the discrepancy between the empirical and theoretical results grows,

more evidently at the smaller dimensions. The discrepancy could stem from the bundling capacity, i.e., the number
of retrievable elements, which decreases with a shrinking dimension.



Table 3
BCF performance when varying the sampling width (A). D, = 512, F = 2, M1 = M2 = 1000.

A T* Accuracy  Num. Iters.
10 0.00602 99.4% 39.16
50  0.00641 99.4% 17.86
100  0.00641 99.4% 15.73
500  0.00722 98.6% 24.25
1000 0.00441 46.9% 276.78
103 103
O O
© ©
3 102 % 102
[®)] [®)]
o o
£ 10! £ 10!
> >
(o] (o]
o o
10° 1 1 100
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
Similarity values Similarity values
(a) {oo-based similarity. (b) Dot-product similarity.

Fig. 7. Log-scale histograms of £-based and dot-product similarities. BCF with D), = 512, B =4, F =2, M1 = M2 = 200,and T = 0.

Effect of sampling width (A) in BCF In this set of experiments, we do not restrict the threshold to be 1/A. Instead,
we run a grid search for each sampling width over threshold values (7') in [0, 1] and use the optimal value in our
benchmarks.

Table 3 shows how the accuracy and the number of iterations change as we vary the sampling width (A) in
{10, 50, 100, 200, 500, 1000}. As expected, there is a sweet spot for sampling width, which lies at around 100 in
this setting. Smaller values of sampling widths do not negatively impact the accuracy, but convergence speed does
decrease. As we increase the sampling width beyond 100, the accuracy drops. Moreover, with a fine-tuned threshold
value, we can factorize product vectors notably faster (15.73 iterations) than when BCF is run in the unconditional
random sampling mode (38.87 iterations).

Similarity metric Here, we compare the {,-based similarity with the dot-product similarity by considering the
similarity distributions of the associative memory search inside BCF. We select a problem size that cannot be
solved by the dot-product similarity, but can be solved by the {.-based similarity. The threshold nonlinearity and
conditional random sampling are disabled. For ' = 2, B = 4, and D, = 512, one such problem size is 4 - 104
We execute the decoding for two iterations and show the resulting histogram in Fig. 7. The {,,-based similarity
tends to induce sparse activations: most similarities have a value of 0 and will have no effect on the weighted
bundling of codevectors. Conversely, the dot-product similarity exhibits a wider distribution with almost no zero-
valued similarities. Finally, the {,,-based similarity found the correct solution (similarity value of 1), whereas the
dot-product similarity did not.

5. Part II: Effective Replacement of Large FCLs with Block Code Factorizers

So far, we have applied our BCF on synthetic (i.e., exact) product vectors. In this section, we present our second
contribution, expanding the application of our BCF to classification tasks in deep CNNs. This is done by replacing
the large final FCL in CNNs with our BCF, as shown in Fig. 8. Instead of training C hyperplanes for C classes,
embodied in the trainable weights W &€ RP*Do of the FCL, where C = D,, we represent the classes with a
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Fig. 8. Replacement of a large FCL with our BCF (b) without or (c) with a projection W',

fixed binary SBC product space P € {0, 1}?»*P2, The product space requires only B - ij:l M; fixed integer
values to be stored with the binary SBC offset notation accounting for 256 values on ImageNet-1K with B = 4
and M; = M, = 32. We provide two variants to interface the D;-dimensional output features of the CNN'’s final
convolutional layer with our BCF, depicted in Fig. 8b and Fig. 8c. In the first variant, BCF is directly interfaced with
the CNN’s output features; hence, the dimensionality becomes D, = D;. The second variant uses an intermediate,
trainable projection W' € RP*P» where D, < D,,, The number of parameters is notably reduced in both variants,
by D, - D; without the projection, and by (D, — D,) - D; with the projection.

5.1. Casting classification as a factorization problem

First, we describe how the classification problem can be transformed into a factorization problem. The codebooks
and product space are naturally provided if a class is a combination of multiple attribute values. For example, the
RAVEN dataset contains different objects formed by a combination of shape, position, color, and size. Hence, we
define four codebooks (X', X2, X3, and X*) where the size of each codebook (M) corresponds to the number of
values the individual attribute can have [11] (e.g., the codebook X! representing five shapes has M; = 5 elements).
The resulting product space is P = X' ® X? ® X® @ X*.

If no such semantic information is available, the codebooks and product space are chosen arbitrarily. When
targeting two factors, we first define a product space P = X! ® X2 that contains M; - M5 unique quasi-orthogonal
product vectors. The size of the product space is set to the number of classes C, such that each product vector in P
can be assigned to a unique class. For example, for representing the C = 100 classes in the CIFAR-100 dataset, we
define a product space with size 100 using two codebooks of size M; = M, = y/C = 10. Then, the product vector
p1 = x} ® x? belongs to “class 1" and p1og := X1, ® X3, to “class 10072

5.2. Training CNNs with blockwise cross-entropy loss

After defining the product space, we train a function fy (e.g., a CNN) with trainable parameters 6 to map the
input data (e.g., images) to the target product vectors of the corresponding classes. Fig. 9a illustrates the training
procedure. Given a labeled training sample (I, y) containing the input image I € R*"*" and the target label y,
we first pass the image through the function fj, yielding q = fy(I). Next, we generate the target product vector by
mapping the target label y to the factor indices (f' and f?) and forming the corresponding product p = x}l ® x}%z.

A typical loss function for binary sparse target vectors is the binary cross-entropy loss in connection with the sig-
moid nonlinearity. However, we experienced a notable classification drop when using the binary cross-entropy loss;
e.g., the accuracy of MobileNetV2 on the ImageNet-1K dataset dropped below 1% when using this loss function.

21f /C is not an integer, we take the ceiling of VC.
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Fig. 9. Training and inference with BCF.

To this end, we propose a novel blockwise loss that computes the sum of per-block categorical cross-entropy loss
(CEL). For each block b, we extract the L-dimensional block qp := q[(b — 1)L + 1 : bL] from the output features q
and the target index p[b]. Then, the blockwise CEL is defined as:

. 1< .
L(q.p.5) =5 > Lerw (s~ @ p[b]). (12)
b=1

where Lcgy is the categorical CEL, which combines the softmax activation with the negative log-likelihood loss,
and s a trainable inverse softmax temperature for improved training [43, 46, 48]. The loss function £ is minimized
by batched stochastic gradient descent (SGD).

5.3. BCF-based inference

The BCF-based inference is illustrated in Fig. 9b. We pass a query image (I) through the CNN, yielding the query
product (q), which can be interpreted as a “noisy” version of the ground-truth product vector p. We then search
for the product vector p € P with the highest similarity to q. One baseline is to compute the similarity between
q and each product vector in P in a brute-force manner; however, this requires many similarity computations and
the storage of each product vector in P. Instead, we search for the closest product vector by factorizing the query
product vector using BCF, shown in Fig. 9b.

We pass the output of the CNN through a blockwise softmax function with an inverse softmax temperature sr,
which shapes and normalizes the blockwise distribution of the query vector. The optimal inverse softmax temper-
ature was found to be sp = 1.5, based on a grid search on the ImageNet-1K training set with MobileNetV2, and
applied for all architectures.

5.4. Experimental Setup

Datasets We evaluate our new method on three image classification benchmarks.

ImageNet-1K. The ImageNet-1K dataset [35] is a large-scale image classification benchmark with colored images
from C = 1000 different classes. The training set contains over 1.2 M samples, and the validation set includes
50, 000 samples (50 per class), all with a resolution of 224 x 224.

CIFAR-100. The CIFAR-100 dataset [49] contains colored images with a resolution of 32 x 32 from C = 100
classes. The dataset provides 500 samples for training and 100 for testing per class.

RAVEN. The RAVEN dataset [34] contains Raven’s progressive matrices tests with gray-scale images with a res-
olution of 160 x 160. A test provides 8 context and 8 answer panels, each containing objects with the following
attributes: position, type, size, and color. In this work, we exclusively target the recognition of single objects inside
the panels. Therefore, we extract all panels with single objects from the center, 2x2 grid, and 3x3 grid constellation.
The extraction gives us a dataset with 136, 321 panels for training, 45, 144 for validation, and 45, 144 for testing.
We combine the positions from the different constellations, yielding 14 unique positions: 1 for the center, 4 for the



2x2 grid, and 9 for the 3x3 grid. Overall, this dataset contains C = 4200 attribute combinations (14 positions x 5
types x 6 sizes x 10 colors).

Architectures  ShuffleNetV2 [40], MobileNetV2 [41], ResNet-18, and ResNet-50 [50] serve as baseline architec-
tures. In addition to our BCF-based replacement approach, we evaluate each architecture with the bipolar dense
resonator [14, 15], the Hadamard readout [43], and the Identity readout [33]. For the FCL replacement strategies
without the intermediate projection layer, we removed the nonlinearity and batch norm of the last convolutional
layer of all CNN architectures. This notably improved the accuracy of all replacement strategies; e.g., the accuracy
of MobileNetV2 with the Identity replacement improved from 60.28% to 70.72% when removing the batch norm
and the ReLU6 of the last convolutional layer. All other architectural blocks remained the same, including shortcuts
in the last block of the ResNet-18 and ResNet-50. To apply the Identity approach where D; # D,, we used an
identity matrix that reads out the first D, elements of the output feature vector and ignores the remaining D; — D,
elements. We could not adjust the dimension D; since it would have required additional adaptations in the CNNss,
e.g., a downsampling layer in the shortcut connection of ResNet-50.

Training setup The CNN models are implemented in PyTorch (version 1.11.0) and trained and validated on a
Linux machine using up to 4 NVIDIA Tesla V100 GPUs with 32 GB memory. We train all CNN architectures with
SGD with architecture-specific hyperparameters, described in Appendix A.1. For each architecture, we use the same
training configuration for the baseline and all replacement strategies (i.e., Hadamard, Identity, resonator networks,
and our BCF). We repeat the main experiments five times with a different random seed and report the average results
and standard deviation to account for training variability.

5.5. Comparative Results

Table 4 compares the classification accuracy of the baseline with various replacement approaches without pro-
jection, namely Hadamard [43], Identity [33], bipolar dense [14], and our BCF. On ImageNet-1K, BCF reduces the
total number of parameters of deep CNNs by 4.4%—44.5%3, while maintaining a high accuracy within 2.39% across
the majority of architectures, with the only exception of ShuffleNetV2 showing 4.46% accuracy drop due to its very
large FCL accounting for 44.5% of total parameters. Our BCF matches the brute-force accuracy within 0.44% in all
architectures while requiring only 5-7 iterations on average, despite the query product vectors from the CNNs being
“noisy.” Inspired by extremely fast convergence on the synthetic experiments (see Fig. 3), we could show that BCF
can match the brute-force accuracy within 0.54% when only allowing up to N = 3 iterations (see Appendix A.4).
This does not hold for the bipolar dense resonators showing notable accuracy drop (up to 16.22%), compared to the
brute-force search, despite allowing a high number of iterations (N = 150) and conducting extensive hyperparame-
ter tuning across various loss functions, including arcface [51] (see Appendix A.2).

On CIFAR-100, BCF matches the baseline within 0.91% with only 2 average iterations; while on RAVEN, it
requires a slightly higher number of iterations (16) due to the larger number of factors (F' = 4) and the asymmetric
codebook sizes. Across all datasets and architectures, our BCF reduces the large FCL’s computational cost by 55.2—
86.7%.

Considering the other FCL replacement approaches, Hadamard consistently outperforms Identity. However, both
the memory and computation requirements of Hadamard are O(D;-D,), while our BCF reduces both to O(D;-/D,),
as F' = 2 and N = 3 are constant. Hence, Hadamard is ineffective for a large value of D,. Moreover, Identity is only
competitive when D; is within the range of D, (MobileNetV2 and ShuffleNetV2); for other combinations, either it
is not applicable (ResNet-18 where D; < D,), or ineffective (ResNet-50 where D; > D,).

We compare our approach to weight pruning techniques, which usually sparsify the weights in all layers, whereas
we focus on the final FCL due to its dominance in compact networks. Such pruning can be similarly applied to earlier
layers in addition to our method. Pruning the final FCL of a pretrained MobileNetV?2 with iterative magnitude-based
pruning [52] yields notable accuracy degradation as soon as more than 95% of the weights are set to zero. In contrast,
our method remains accurate (69.76%) in high sparsity regimes (i.e., 99.98% zero elements). See Appendix A.6 for
more details.

3The relative parameter reduction depends on the size of the overall network and the final FCL, which we replace with our method.



Table 4

Comparison of approaches which replace the final FCL without any projection layer (D; = D). We report the average accuracy = the standard
deviation over five runs with different seeds for the baseline and our GSBCs.

FCL replacement approach

Bipolar dense Our BCF (B = 4)
Dataset/ (Di. Dy) Baseline Had. Id. BF Res. Avg. BF Fac. Avg.  Param. FCL comp.
architecture nee acc. acc. acc. acc. acc.* iter.* acc. acc. iter.  saving? saving?

ImageNet-1K

ShuffleNetV2 (1024, 1k)  69.22%020 6802 67.62 66.17 5454 150  65.09%010  64.76+0.13 7 445% 55.2%
MobileNetV2 (1280, 1k)  71.57%013 7130 7072 70.64 60.83 150  70.00£907  69.76%013 6  37.6% 61.6%
ResNet-18 (512,1k)  70.39%011  N/A N/A 6865 54.17 150  68.44%008 g 0*0-07 7 4.4% 55.2%
ResNet-50 (2048, 1k) 7621928 7530 7465 7580 67.98 150  76.34F00% 7625007 5 8.0% 68.0%
CIFAR-100

ResNet-18 (512,100)  78.10%931 7721 7656 76.63 71.15 150  77.31%¥015  7719+017 2 0.5% 60.0%
RAVEN

ResNet-18 (512,42k)  99.88%00L  N/A N/A  99.89 9492 45  99.87t001 g9 go+0.02 16 16.2% 86.7%
p-value - - 0.125 0.125 0.063 0.031 - 0.094 0.063 - - -

Acc.= Accuracy (%); N/A= Not applicable; Had.= Reproduced Hadamard [43]; Id.= Reproduced Identity [33]; BF= Brute-force; Res.= Resonator nets [14]; Fac.=

Block code factorizer whereby it sets F = 2 for ImageNet-1K and CIFAR-100, and F = 4 for RAVEN. p-value is determined by signed Wilcoxon test with re-
spect to baseline accuracy. * Maximum number of iterations was increased to N = 150 for better performance in the resonator nets that leads to 10x more
operations than the brute-force search.

Table 5

Classification accuracy when interfacing the last convolution layer with BCF using a projection layer with D, = 512.

Baseline Our BCF (D, = 512, B =4)
Dataset/ BF Fac. Avg.  Param.  FCLcomp.
. (Di, D,)  # Param. Acc. . . .
architecture acc. acc. iter.  saving? saving?

ImageNet-1K

ShuffleNetV2 (1024, 1k) 23M 69221020 g 701l g 41+0.14 6 21.7% 29.6%
MobileNetV2 (1280, 1k) 34M 71571013 7169011 71 49F0.10 6  184% 33.4%
ResNet-18 (512, 1k) 11.5M  70.39%011 g9 57+017 g9 19+0.13 6 2.2% 10.4%
ResNet-50 (2048, 1k) 255M  76.21F028  76.72%006 76 56+0.08 5 3.9% 40.8%
RAVEN

ResNet-18 (512, 4.2k) 13.3M  99.88%001 99 8g+0.00 g9 g5+0.02 16 14.2% 78.6%
p-value - - - 0.465 0.313 - - -

Furthermore, we compare our results with [46], which randomly initialize the final FCL and keep it fixed during
training. On CIFAR-100 with ResNet-18, they could show that fixing the final FCL layer even slightly improves the
accuracy compared to the trainable FCL (75.9% vs. 74.9%; see their Table 1). However, our BCF-based approach
outperforms their fixed FCL approach (77.19%) while reducing the memory requirements and the FCL compute
cost.

Table 5 shows the performance of our BCF when using the projection layer (D, = 512). The projection layer
improves the BCF-based accuracy in all benchmarks, especially in cases where the BCF replacement approach
faced challenges (i.e., ShuffleNetV2). Overall, we reduce the total number of parameters by 2.2%-21.7% while
maintaining the accuracy within 1.2%, compared to the baseline with trainable FCL.



Table 6

Classification accuracy (%) on ImageNet-1K for the baseline and the block code-based replacement approaches (F = 2) with different number
of blocks (B). Lower number of blocks (B) results in higher accuracy.

ShuffleNetV2 MobileNetV2 ResNet-18 ResNet-50
Classification
BF Fac. BF Fac. BF Fac. BF Fac.
approach
Baseline - 69.22+020 - 71.57+013 - 70.39+0-11 - 76.21%028 -
4 65_09j:0.10 64_76j:0.13 70.00:‘:0.07 69.76i0'13 68.43i0‘08 68.00i0‘07 76.34i0‘04 76.25i0‘07
GSBCs 8 64.30 63.65 69.53 69.20 67.90 67.76 76.69 76.48
) 16 63.22 62.04 69.34 68.83 67.02 64.98 76.52 76.27
32 61.96 59.74 69.12 68.35 65.09 61.39 76.08 75.62
Table 7

Loading a pretrained ResNet-18 model improves accuracy and training time. Classification accuracy (%) on ImageNet-1K using BCF with
ResNet-18 (with projection D, = 512, B =4, F = 2).

Pretrained  Training BF Fac.
model epochs acc. acc.
Baseline X 100 70.39%0-11 -

GSBCs 100 69.57E017  69.10%0-14

X

v 50 68.50%014  8,05%0.08
GSBCs v 75  69.21%009  §8.83+0.07

v/ 100 70.08%016 g9 72+0.15

5.6. Ablation Study

We give further insights into the BCF-based classification by analyzing the effect of the number of blocks, the
projection dimension, the number of factors, and the initialization of the CNN weights.

Number of blocks B Table 6 shows the brute-force and BCF classification accuracy for block codes with different
numbers of blocks. The brute-force accuracy degrades as the number of blocks (B) increases, particularly in net-
works where the final FCL is dominant (e.g., ShuffleNetV2). These experiments demonstrate that deep CNNs are
well-matched with very sparse vectors (e.g., B = 4), and motivated us to devise a BCF that can factorize product
vectors with such a low number of blocks. Our BCF achieves an accuracy within 0.43% of the brute-force accuracy
for product vectors with B = 4. For a larger number of blocks (B > 8), our BCF matches the brute-force accuracy
within 3.7%. Note that BCF’s hyperparameters were exclusively tuned for B = 4, and then applied for other blocks.
Hence, BCF for B = {8, 16, 32} could be further improved by hyperparameter tuning.

Projection dimension D, 'We varied the projection dimension (D)) from 128 (high reduction) to 1000 (no reduction
since D, = D,)) for MobileNetV2 on ImageNet-1K. With an extremely low dimension (D, = 128), BCF shows
a 2.86% accuracy drop compared to the baseline with trainable FCL while saving 32.8% of the parameters. When
going to higher dimensions (e.g., D, = 768), BCF even surpasses the baseline accuracy while saving 8.7% of the
parameters. See Appendix A.3.

Number of factors F So far, we have evaluated BCF with two factors, each having codebooks of size M; = My =
32 on the ImageNet-1K dataset. We demonstrate BCF’s capability with F = 3 codebooks of size My = 10, which
achieves similar accuracy while requiring a higher number of iterations (11 vs. 6) than F = 2. However, since
each iteration requires fewer search operations for F = 3 (30 vs. 64 searches), the overall saving in computational
complexity of the FCL remains similar. See Appendix A.S5.

Initialize ResNet-18 with pretrained weights Finally, we show that the training of BCF-based CNNs can be im-
proved by initializing their weights from a model that was pretrained on ImageNet-1K. Table 7 shows the positive



impact of pretraining of ResNet-18 (with projection) on ImageNet-1K. The pretraining improves the accuracy of
BCF by 0.62%, compared to the random initialization, when keeping the number of epochs the same. Moreover,
when reducing the number of training epochs to 75 and 50, BCF still yielded accurate predictions (68.83% and
68.05%). This experiment shows that our BCF-based method can be applied with reduced training cost if a pre-
trained model is available.

6. Discussion

BCF is a powerful tool to iteratively decode both synthetic and noisy product vectors by efficiently exploring the
exponential search space using computation in superposition. As one viable application, this allowed us to effec-
tively replace the final large FCL in CNNs, reducing the memory footprint and the computational complexity of the
model while maintaining high accuracy. If the classes were a natural combination of multiple attribute values (e.g.,
the objects in RAVEN), we cast the classification as a factorization problem by defining codebooks per attribute,
and their combination as vector products. In contrast, the codebooks and product space were chosen arbitrarily if
the dataset did not provide such semantic information about the classes (e.g., ImageNet-1K or CIFAR-100). Instead
of this random fixed assignment, one could use an optimized dynamic label-to-prototype vector assignment [53]. It
would be also interesting if a product space could be learned, e.g., by gradient descent, revealing the inherent struc-
ture and composition of the individual classes. Besides, other applications may benefit from a structured product
representation, e.g., representing birds as a product of attributes in the CUB dataset [54]. Indeed, high-dimensional
distributed representations have already been proven to be helpful when representing classes as a superposition of
attribute vectors in the zero-shot setting [55]. Representing the combination of attributes in a product space may
further improve the decoding efficiency.

This work focuses on decoding single vector products; however, efficiently decoding superpositions of vector
products with our BCF would be highly beneficial. First, it would allow us to decode images with multiple objects
(e.g., multiple shapes in an RPM panel on RAVEN). Second, it enables the replacement of arbitrary FCL in neural
networks, which usually involve activating multiple neurons. This limitation has been addressed in [56] albeit for
dense codes, where a mixed decoding method efficiently extracts a set of vector products from their fixed-width
superposition. The mixed decoding combines sequential and parallel decoding methods to mitigate the risk of noise
amplification, and increases the number of vector products that can be successfully decoded. However, the number
of retrievable vector products in the superposition still needs to be higher to be able to replace arbitrary FCLs in
neural networks. Therefore, future work into advanced decoding techniques could improve this aspect of BCF.

Finally, our BCF could enhance Transformer models [57] on different fronts. First, large embedding tables are a
bottleneck in Transformer-based recommendation systems, consuming up to 99.9% of the memory [58]. Replacing
the embedding tables with our fixed-width product space would reduce the memory footprint as well as the compu-
tational complexity in inference when leveraging our BCF. Second, the internal feedforward layers in Transformer
models could be replaced by BCEF, specifically the first of the two FCLs which can be viewed as key retrieval in
a key-value memory [30]. As elaborated in the previous paragraph, the number of decodable vector products in
superposition is still limited. Hence, sparsely activated keys would be beneficial. It has been shown that these sparse
activations can be found in the middle layers of Transformer models [59].

7. Conclusion

We proposed an iterative factorizer for generalized sparse block codes. Its codebooks are randomly distributed
high-dimensional binary sparse block codes, whose number of blocks can be as low as four. The multiplicative bind-
ing among the codebooks forms a quasi-orthogonal product space that represents a large number of class categories,
or combinations of attributes. As a use-case for our factorizer, we also proposed a novel neural network architecture
that replaces trainable parameters in an FCL (aka classifier) with our factorizer, whose reliable operation is ver-
ified by accurately classifying/disentangling noisy query vectors generated from various CNN architectures. This



quasi-orthogonal product space not only reduces the memory footprint and computational complexity of the net-
works working with it, but also can reserve a huge representation space to prevent future classes/combinations from
coming into conflict with already assigned ones, thereby further promoting interoperability in a continual learning
setting.
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Appendix A. Effective replacement of large FCLs
This appendix provides more details on the effective replacement of large FCLs using the proposed BCF.
A.l. Overall CNN training setup

We train all CNN architectures with SGD with architecture-specific hyperparameters, summarized in Table Al.
The training setups for the different networks mainly differ in the chosen learning rate schedule. ShuffleNetV2 was
trained for 400 epochs using a learning rate initially set to 0.5 and linearly decreased towards O at every epoch.
MobileNetV2 was trained with a cosine learning rate schedule [60], where the learning rate is decreased based on
a cosine function (single cycle) from 0.04 to 0 within 150 epochs. An additional warmup period of 5 epochs was
used. ResNet-18 and ResNet-50 were trained with an exponential decaying learning rate schedule. For training the
ResNet-18 on the RAVEN dataset, we started with a pre-trained model from the ImageNet-1k dataset [61].

A.2. Loss functions for the bipolar dense resonator network integration

We evaluated different loss functions for replacing FCL with the bipolar dense resonator networks. A standard
cross-entropy loss operating on the cosine similarities between the query vector and the fixed bipolar vectors, scaled
with a trainable inverse softmax temperature s [43], yielded good brute-force accuracies but notable drops when
integrating the resonator networks. For example, when replacing the final FCL of ShuffleNetV2 on ImageNet-1K,
we achieved a brute-force accuracy of 66.14% but a much lower resonator network accuracy (44.88%). Alternative
adaptive cosine-based loss functions, such as AdaCos [62], were ineffective too.

Instead, we found that the fixed but configurable arcface [S1] loss function is the most suitable for the resonator
network integration. Arcface computes the angle of the target logit, adds an additive angular margin (i) to the target
angle, and gets the target logit back again by the cosine function. Finally, the logits are rescaled by a fixed scaling
factor (s) before applying the cross-entropy loss. To find the optimal hyperparameters (s, m), we conducted a grid
search across a wide range of configurations (s € {1, 10, 30,50, 70},m € {0.0,0.05,0.1,0.15}). On ImgeNet-1K,
the search yielded the parameters (70, 0.1) for ShuffleNetV2, (50, 0.1) for MobileNetV2, (70,0.1) for ResNet-18,
and (70, 0.1) for ResNet-50. The optimal parameters for the remaining datasets with ResNet-18 were (30, 0.1) on
CIFAR-100 and (10,0.1) on RAVEN. The large margin separation notably increased the resonator network-based
accuracy, e.g., by 9.66% for ShuffleNetV2 on ImageNet-1K.

A.3. Projection dimension D,

The main results of BCF using the projection layer are reported for GSBC vectors with a dimension of D), = 512.
Here, we show that the dimension can be flexibly varied, providing a trade-off between parameter (and therefore
computation) saving and accuracy. We varied the dimension D, from 128 (high reduction) to 1000 (no reduction
since D, = D,) for MobileNetV2 on ImageNet-1K. The hyperparameters of BCF were kept the same for all D,,.
Table A2 shows the results. With an extremely low D, = 128, BCF shows 2.86% accuracy drop compared to the
baseline with trainable FCL while saving 32.8% of the parameters. With a larger D, > 512, it yields iso-accuracy
with the baseline while saving up to 18.4% of the parameters. With D, = 768, BCF eventually surpasses the
accuracy of the baseline while saving 8.7% of the parameters.

A.4. Maximum number of iterations N

On ImageNet- 1K, the maximum number of iterations of BCF with 2 codebooks is setto N = [C/(M;1 + M3) | =
15. However, motivated by the extremely fast convergence on the synthetic product vectors (see Fig. 3 in main
text), we show that the maximum number of iterations can be further limited to only 3 with negligible accuracy loss
while reducing the computational cost. Table A3 compares the performance on ImageNet-1K between N = 15 and
N = 3. Across all architectures, our BCF matches the brute-force accuracy within 0.44% with N = 15 iterations,
and within 0.54% with N = 3 iterations at maximum. In both cases, the average number of iterations is lower than
the maximum N; thus, the factorizer converges on average before the maximum N is reached.



Table Al
Hyperparamters for CNN training.

Learning rate schedule

Dataset/ Init. Decay  Step
) Ep. Bs. Mmt. Wd. Type .
architecture value rate size

ImageNet-1K
ShuffleNetV2 400 2048  4e-5 0.9 0.5 lin - -
MobileNetV2 150 256 4e-5 0.9 0.04 cos - -

ResNet-18 100 256 le-4 0.9 0.1 exp 0.1 30
ResNet-50 100 256 le-4 0.9 0.1 exp 0.1 30
CIFAR-100

ResNet-18 200 128 Se-4 0.9 0.1 exp 0.2 60
RAVEN

ResNet-18 100 256 le-4 0.9 0.1 exp 0.1 50

Ep.= Epochs; Bs.= Batch size; Mmt.= Momentum; Wd.= Weight decay.

Table A2

Classification accuracy (%) on ImageNet-1K when replacing the FCL in MobileNetV2 with BCF using a projection layer with variable D). The
remaining configurations (B = 4, F = 2) are kept constant.

Param.
D, BF Fac. .
saving T
Baseline - 7157E013 - 0.0%

128  70.55E010 g 71£012  328%

256 71.15%007  70.64F013  280%

GSBCs 512 71.69%011  7141%010  184%
768  71.80%009 71 g4+0.11 8.7%

1000 71.86+016 71 56+018 0.0%

A.5. Number of factors F

So far, we have evaluated BCF with two factors, each having codebooks of size M1 = My = 32 on the ImageNet-
1K dataset. We demonstrate its capability with F' = 3 codebooks of size My = 10 each. Consequently, the maximum
number of iterations becomes N = [1000/30| = 33. Table A4 compares the classification accuracy of the factorizer
for F = 2 with F = 3. The factorizer with the higher number of factors achieves similar accuracy while requiring
higher iterations (11 vs. 6) compared to F' = 2. However, since each iteration requires fewer search operations for
F = 3 (30 vs. 64 searches), the overall compute saving of the FCL remains similar. Our BCF provides a time-space
trade-off between the number of factors while keeping the accuracy and the computational cost constant: a low
number of factors (F = 2) requires more space to store the codebooks (2 - 32 = 64 codevectors) but features lower
average iterations (6), whereas a higher number of factors (F = 3) requires less space (3 - 10 = 30 codevectors) but
more iterations on average (11).

A.6. Comparison with weight pruning

We compare our approach to weight pruning techniques, which mostly sparsify the weights in all layers, whereas
we focus on the final FCL due to its dominance in compact networks. Such pruning can be similarly applied to
earlier layers in addition to our method. For a one-to-one comparison, we prune the final FCL weights of a pretrained
MobileNetV2 using iterative magnitude-based pruning [52]. As shown in Table AS, the accuracy of the magnitude-
based pruning method quickly degrades as soon as more than 95% of the weights are set to zero. In fact, this



Table A3

BCF-based replacement approach without and with projection (D, = 512) when allowing BCF a maximum of N = 15 (standard) iterations, or
N =3.

GSBCs (B=4)
BCF (N = 15) BCF (N = 3)
Baseline BF Avg. Avg.
Acc. . Acc. .
acc. acc. 1ter. 1ter.
No projection
ShuffleNetV2  69.22%0-20 5 09+010 g4 76%013 73  6468%015 94
MobileNetV2 ~ 71.57%013  70,00%007 6976013 g2  69.72£013 23
ResNet-18 70.391011 68.44%008 68001007 67 67.901007 24
ResNet-50 76.21%028  76.34+£0.04  7695+007 48 76.23£007 9.9
Projection
ShuffleNetV2  69.2210-20 g8 671011 g841+014 g0  68.33%013 94
MobileNetv2  71.57%013  7169+011 71 49+010 55 71.44%011 93
ResNet-18 70.39%011 6957017 g9 19£013 g2 69.10T014¢ 24
ResNet-50 76.21£028 7672006 7656008 46 76.54£006 99
Table A4

Classification accuracy (%) on ImageNet-1K when replacing the FCL in MobileNetV2 with BCF using a projection with D, = 512 and variable
F.

Avg.  FCLcomp.
F BF Fac.
iter. saving?
Baseline -  71.57%013 - - 0.0%
GSBC 2 71.69%012 77 49+0.10 6 33.4%
S
3 71.61%007  71.927+0.10 11 35.6%

Table AS
Comparison of BCF with pruning of final FCL weights of a pretrained MobileNetV2 on ImageNet-1K.

Approach Zero elements (%)  Accuracy (%)
Baseline - 71.57%013
BCF 99.98  69.76%013
80.00 71.13
90.00 70.44
FCL pruning 95.00 69.48
99.00 65.82
99.98 18.38

susceptibility forced related works to prune the final FCL only to 90% [63]. In contrast, our method remains accurate
in high sparsity regimes: the codebooks store only B - F - My = 4 - 2 - 32 = 256 indices instead of D, - C values
(i-e., 99.98% zero elements) with an achieved an accuracy of 69.76%.
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