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Abstract. Neuro-Symbolic approaches bring together symbolic logic and neural network-based machine learning. This has the
potential to build robust reasoning systems. However, the field faces challenges due to diverse design approaches and evaluation
methods. We address the latter challenge by emphasizing the critical requirement for a comprehensive benchmark framework
tailored to the unique evaluation needs of neuro-symbolic reasoning systems. We highlight the importance of such benchmarks
and discuss essential criteria, including metrics, dataset selection, and the formulation of reasoning tasks. This work contributes
towards a more systematic and principled evaluation framework for neuro-symbolic reasoning, highlighting the broader role of
benchmarks in advancing the field.
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1. Introduction

Neuro-symbolic Artificial Intelligence (AI) [1, 2] is a promising field that aims to bridge the gap between tra-
ditional symbolic logic and modern neural network-based machine learning. The idea is to combine the strengths
of both approaches while overcoming their weaknesses. The focus of this paper lies within the realm of neuro-
symbolic reasoning. At its core, neuro-symbolic reasoning involves integrating symbolic reasoning, which relies on
structured logic and formal knowledge representation, with neural network-based methods known for their capacity
to process large-scale, unstructured data and learn complex patterns from it. This fusion holds the potential for de-
veloping systems with enhanced performance, explainability, and generalization abilities [3]. It’s important to note
that these approaches, unlike traditional reasoning methods, are not necessarily sound and complete. Instead, they
strike a balance between approximating the precise reasoning capabilities of symbolic systems and harnessing the
robust learning capabilities of machine learning techniques.

However, progress in this field faces significant challenges because neuro-symbolic reasoning is emerging, in
contrast to other areas with extensive research and well-established benchmarks. For instance, several models (Graph
Neural Networks (GNN) [4], Logic Tensor Networks [5]), methodologies (Inductive Logic Programming [6]) and
innovative ideas (explainable AI [7], zero-shot learning [8]) enrich this field. As a result, existing works in this field
exhibit diversity in techniques, and hence, different methods and criteria are used to evaluate the performance of
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neuro-symbolic reasoning systems (see Table 1). The lack of a standardized approach makes it difficult to compare
these systems and make progress in the field. Furthermore, based on the reciprocal relationships between neural and
symbolic components and how they benefit each other, neuro-symbolic reasoning systems, and in general neuro-
symbolic AI systems, can be categorized into one of the five distinct categories [9].

– Symbolic Neuro Symbolic: In this category, input and output are in symbolic form, and processing relies on
neural networks, often including Natural Language Processing-based systems.

– Symbolic[Neuro]: Symbolic solvers use neural models internally for some functions, as seen in systems like
AlphaGo [10].

– Neuro ∪ compile[Symbolic]: These approaches take symbolic rules as input and compile them during train-
ing, effectively integrating symbolic knowledge into the structure of neural models, as demonstrated in Deep
Learning For Symbolic Mathematics [11].

– Neuro → Symbolic: This category involves a refined integration of neural and symbolic approaches, where both
systems collaborate to enhance specific tasks, such as in the case of Neuro-Symbolic Concept-Learner [12].

– Neuro[Symbolic]: Refers to the embedding of symbolic reasoning inside a neural engine, such as Graph Neural
Networks (GNN).

Each of these categories represents a unique approach to neuro-symbolic AI, adding an extra layer of diversity to
the advancements in this field.

Drawing inspiration from Jim Gray’s pioneering work [13] on domain-specific benchmarks for databases, our goal
is to tackle the challenge of benchmarking neuro-symbolic reasoners. The primary purpose of such a benchmark
is two-fold. Firstly, it serves as a tool to identify the performance bottlenecks, enabling targeted improvements in
the systems where algorithms are still evolving. Secondly, benchmarks facilitate meaningful comparisons between
various systems, offering insights into their relative strengths and weaknesses. While this paper does not put forth
an alternative benchmark, we highlight the strong need for such benchmarks, including their features, and explain
why they are essential for moving the field forward.

In the following section (Section 2), we delve into the recent advancements in neuro-symbolic reasoning, high-
lighting the challenges in evaluating and comparing the existing state-of-the-art neuro-symbolic reasoners. Subse-
quently, in Section 3, we address the barriers that must be overcome to facilitate the effective evaluation of neuro-
symbolic reasoners.

2. Neuro-Symbolic Reasoning for Description Logics

In recent years, there have been significant advancements in developing neuro-symbolic reasoners for description
logics (DLs) [14], a formal underpinning for the Web Ontology Language (OWL 2) [15]. While most of these works
predominantly focus on classification and consistency checking [16–18], the other reasoning tasks, such as instance
retrieval, query rewriting, materialization, abduction, and explanation generation, remain relatively unexplored. The
intricacy of these tasks varies significantly, and delving into their complexities offers a promising avenue for further
exploration.

Research in this domain takes an alternative approach to traditional reasoning tasks such as classification and
consistency, breaking them into class subsumption, class membership, and satisfiability tasks. Various techniques
are employed, such as geometric embeddings [19–22] that map ontological relationships to geometric spaces and
emulating logical reasoning through machine learning [23–25]. A comprehensive overview and detailed insights
into the state-of-the-art neuro-symbolic reasoning landscape are discussed in [17, 18]. Regarding other categories,
a limited amount of work, such as that for e-commerce search [26], merges neuro-symbolic reasoning with query
rewriting. This involves a Knowledge Graph (KG) [27] enhanced neural network approach that integrates auxiliary
knowledge from a product Knowledge Graph, enhancing semantic understanding of user queries and improving
query reformulation.

The existing traditional benchmarks such as LUBM (Lehigh University Benchmark) [28], UOBM (University
Ontology Benchmark) [29], and OWL2Bench [30] lack suitability for evaluating neuro-symbolic reasoners due to
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their narrow focus on conventional reasoning tasks. Traditional evaluations of reasoning systems often rely on met-
rics such as reasoning time, which may not align well with the evaluation requirements of neuro-symbolic reasoners.
Although the ontologies of these benchmarks, along with those from the OWL Reasoner Evaluation (ORE) Com-
petition [31], can serve as initial datasets for the proposed neuro-symbolic benchmark framework, these datasets
fall short of addressing the distinct challenges posed by neuro-symbolic reasoning. To our knowledge, no bench-
marks or evaluation frameworks have been designed to evaluate and compare neuro-symbolic reasoning systems.
Most reasoner evaluations are performed on different publicly available ontologies, including but not restricted to
SNOMED CT1, Gene Ontology (GO)2, and Galen3, as well as other ontologies available in public repositories such
as DBpedia [32], YAGO [33], Wikidata [34], Claros4, NCBO Bioportal5, and AgroPortal6. However, these offer a
limited set of ontologies for evaluation, which does not cover the full spectrum of possible scenarios.

As discussed in Section 1, neuro-symbolic approaches encompass a range of evaluation methodologies and rea-
soning techniques. This diversity becomes evident in Table 1, highlighting the necessity for a dedicated benchmark
to systematically and comprehensively assess the performance of neuro-symbolic reasoning systems. The table re-
veals the utilization of subsets of description logics, such as ALC and EL++, and various OWL 2 profiles like EL
and RL [35]. Some works also incorporate RDF and RDFS into their reasoning techniques, underlining the diver-
sity in the supported ontology languages and profiles, which implies that existing works handle different levels of
complexity. Furthermore, the table showcases the variety of reasoning tasks undertaken, different datasets utilized,
and the diverse metrics employed for evaluating each approach. The summary column in Table 1 highlights the
differences in techniques used by each work. It is important to note that the paper does not aim to provide an ex-
haustive list of all the existing work. Instead, it emphasizes the variations in reasoning and evaluation approaches.
The collective representation highlights the pressing need for a standardized benchmark to facilitate fair and con-
sistent comparisons, thereby advancing the progress of neuro-symbolic reasoning research. The table reveals that
similar works may differ significantly by employing distinct metrics and datasets to evaluate their contributions. For
instance, consider the works of Makni et al. [25] and Ebrahimi et al. [24]. Both studies focus on RDFS entailment
reasoning, aiming to replicate deductive reasoning processes. However, they adopt different metrics and datasets
to assess the effectiveness and performance of their approaches. Such variations in evaluation criteria can lead to
diverse insights and perspectives on the contributions within the field.

Paper Logic Reasoning
Task

Datasets
Used

Metrics Summary of Approaches
Used

ELEm [19] EL++ Subsumption GO Hits@n,
AUC, Mean
Rank

To capture entity relation-
ships, embeddings were cre-
ated by representing Con-
cepts as n-balls and the re-
lations as translation vectors
between the centers of each
Concept ball. The embed-
dings were utilized to pre-
dict protein-protein interac-
tions.

1https://bioportal.bioontology.org/ontologies/SNOMEDCT
2https://bioportal.bioontology.org/ontologies/GO
3https://bioportal.bioontology.org/ontologies/GALEN
4https://www.clarosnet.org
5https://bioportal.bioontology.org/
6http://agroportal.lirmm.fr/

https://bioportal.bioontology.org/ontologies/SNOMEDCT
https://bioportal.bioontology.org/ontologies/GO
https://bioportal.bioontology.org/ontologies/GALEN
https://www.clarosnet.org
https://bioportal.bioontology.org/
http://agroportal.lirmm.fr/
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EmEL++ [20] EL++ Subsumption SNOMED
CT, Anatomy,
GO, Galen

Hits@n,
AUC, Median
Rank, 90th

percentile
rank

Extended ELEm with re-
lation inclusion and role
chains. Also introduced neg-
ative samples for training.

EmEL-V [21] EL++ Subsumption SNOMED
CT, GO,
Galen

Top@n,
Median
Rank, 90th

percentile
rank

Extended EmEL++ to in-
clude many-to-many rela-
tionships

BoxEL [22] EL++ Subsumption Anatomy,
GO, Galen

Hits@n,
AUC, Mean
Rank

To capture entity relation-
ships, mapped concepts as
boxes and deals with the
limitations of n-ball [19–21]
based embeddings.

Özçep et al. [36] ALC Concept
Membership

NA NA Embeds Concepts in the on-
tology as convex regions in
vector spaces.

E2R [37] ALC Concept
Membership

LUBM Hits@n,
Mean Rank,
MRR

Aiming to preserve the log-
ical structure, proposed em-
beddings in the quantum
space.

Makni and
Hendler [25]

RDFS Entailment
Reasoning

LUBM and
Scientist
dataset cre-
ated from
DBpedia

Precision, re-
call, and F1-
score

The evaluation focused on
assessing noise tolerance
by employing an encoder-
decoder architecture to
translate input RDF graph
embeddings into corre-
sponding inference graph
embeddings.

Ebrahimi et
al. [38]

RDFS Query-based
Classifica-
tion

Created from
Linked Data
Cloud and
Data Hub
websites

Precision, re-
call, and F1-
score

Explored the capabilities
of end-2-end memory
networks. The model’s
capability for multi-hop
reasoning is demonstrated.
The use of normalized em-
beddings support transfer.

Ebrahimi et
al. [24]

RDFS
and
EL+

Entailment
Reasoning

Synthetic
Data and
LUBM

Exact Match-
ing Accuracy

Utilized pointer networks
for learning the sequen-
tial application of inference
rules used in many deductive
reasoning algorithms.

Hohenecker and
Lukasiewicz [39]

OWL
2 RL

Entailment
Reasoning

Claros, DB-
pedia, UMLS,
and Synthetic
Data

Accuracy Developed a deep learning-
based model called Recur-
sive Reasoning Networks
(RNN).
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Eberhart et
al. [23]

EL+ Ontology
Completion
(concept in-
clusions and
existential
restrictions)

Synthetic
Data and
SNOMED

Precision, re-
call, and F1-
score

Showcases completion
reasoning behavior using
various LSTM neural net-
works to learn reasoning
patterns, employing three
distance measures to assess
prediction accuracy.

Makni et al. [40] RDFS Explainable
Entailment
Reasoning

LUBM and
real-world
scholarly
dataset

Accuracy Built upon the previous
work [25] for generating
explanations for the derived
conclusions by taking the
RDF graph and inferred
triples as input and the
explanations as the target.

Hohenecker and
Lukasiewicz [41]

RDF Concept
Membership
and Relation
Prediction

LUBM,
UOBM,
Claros, DB-
pedia

F1 score and
Accuracy

Proposed Relational Ten-
sor Network (RTN). Em-
beddings of the individu-
als are computed by apply-
ing RTNs on the Directed
Acyclic Graph representa-
tion of the ontology (includ-
ing the inferences).

Farzana et al. [26] RDF Query
pruning
and com-
plete query
rewriting

Created from
user search
logs from
eBay Inc.

Precision,
Recall, and
F-score,
and query
accuracy,

Proposes a Knowledge
Graph (KG) enhanced ap-
proach for query rewriting
in e-commerce, leveraging
RDF2Vec entity embed-
dings, entity types, category
information, and entity
frequency extracted from a
product KG.

Table 1: Overview of Variations in Neuro-Symbolic Reasoning and Evaluation Approaches

To further highlight the diversity in the current approaches, we classify the works mentioned in Table 1 into one
of the five distinct categories discussed in Section 1. [23–25, 38, 40, 41] take symbolic reasoning rules as input and
compile them during training (Neuro ∪ compile[Symbolic]), integrating symbolic knowledge into neural models.
[19–22, 36, 37] embed symbolic reasoning inside neural engines, representing symbolic information in geometric
or vector spaces and employing neural methods for reasoning tasks (Neuro[Symbolic]). Additionally, [26] falls into
the category involving a refined integration of neural and symbolic approaches to enhance query rewriting (Neuro
→ Symbolic).

3. Desiderata for Benchmarking Neuro-Symbolic Reasoners

Creating an effective benchmark demands careful consideration of critical principles such as simplicity for acces-
sibility, portability for impartial assessments across various approaches, scalability to accommodate diverse system
sizes, and relevance to reflect practical challenges in benchmark scenarios [13]. However, the evaluation of neuro-
symbolic reasoners presents its own set of distinctive challenges. Given the field’s novelty, state-of-the-art solutions
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do not approach such challenges systematically. Therefore, we advocate below the issues that should be prioritized
in constructing a fair neuro-symbolic reasoning benchmark.

1. Diverse benchmark scenarios
Neuro-symbolic reasoning is a sophisticated AI method aiming to make sense of complex application do-
mains. Thus, to comprehensively evaluate neuro-symbolic reasoners, the benchmark should represent such
complexity by including diverse ontologies that vary in size (Abox and TBox), profile, and axiom types. Dif-
ferent neuro-symbolic reasoners work differently. Therefore, the benchmark scenarios should also include
specific reasoning tasks as well as generic information needs that can be implemented differently. While the
former paves the road to micro benchmarking, the latter will ensure comparability across heterogeneous neuro-
symbolic architectures. Finally, it is important for the benchmark to be scalable and realistic. The benchmark
scenarios should follow real-world use cases. However, the benchmark should be able to scale beyond the
existing requirements to foster technological progress in neuro-symbolic reasoning.

2. Introducing controlled inconsistencies
An intriguing challenge in benchmark design is to enable the benchmark to generate controlled inconsistencies
or even paradoxical scenarios in a deterministic manner. While the importance of this feature is recognized, it’s
noteworthy that existing benchmarks may not yet possess the capacity to introduce generic inconsistencies in
a manner congruent with the context of repair. Additionally, ensuring the reproducibility of such inconsistency
generation poses significant difficulties. Surprisingly, conventional generative AI models like Large Language
Models [42] are not suitable for this purpose. This highlights the unique demands of creating benchmark
scenarios that emulate real-world inconsistencies yet remain controlled and reproducible.

3. Input representation
One of the pivotal challenges in neuro-symbolic reasoning is the representation of information in terms of
embeddings. Traditional embedding techniques such as TransE [43], although powerful, were not initially
designed to retain logical information. This leads to partitioning the knowledge representation into ABox (as-
sertional knowledge) and TBox (terminological knowledge). To address this, the initial step towards creating
a well-founded reasoner involves engineering an embedding method that can effectively capture logical rela-
tionships and nuances. However, imposing a specific representation within the benchmark may be counterpro-
ductive unless its objective is testing specific neurosymbolic properties. The selection of the appropriate input
representation plays a crucial role in ensuring that the benchmark’s evaluation environment mirrors real-world
scenarios, aligning with the amalgamation of neural networks and logical reasoning.

4. Assessment of the deductive capabilities of existing approaches
In the trajectory towards developing a new generation of reasoners that effectively harness the potential of
both neural networks and logical reasoning, a foundational requirement involves conducting an equitable as-
sessment of state-of-the-art solutions. The existing approaches have showcased promising minimal deductive
capabilities. It is critical to ascertain how these models can push their deductive boundaries. This assessment
provides insights into the present capabilities of these approaches and illuminates the trajectory of the field’s
future development. By exploring the limits of these models, researchers can understand the potential path-
ways for enhancing and expanding the capabilities of neuro-symbolic reasoning.

5. Success metrics and key performance indicators
The evaluation of neurosymbolic reasoning necessitates the formulation of metrics that accurately gauge
the success of these approaches. Traditional reasoning methods have relied on notions such as soundness,
completeness, and correctness to validate the deductions. However, these terms don’t fit the realm of neuro-
symbolic reasoning due to the approximate nature of their outcomes. To address this gap, there is a compelling
need to develop novel metrics that integrate logical principles of soundness and completeness with statisti-
cal metrics. Innovative metrics like these would provide a detailed and comprehensive assessment of how
well neuro-symbolic approaches perform, blending neural networks with logical reasoning. An ideal neuro-
symbolic reasoner should support the most expressive logic, be transferable to different domains, generate all
and only correct inferences in a single run, and provide explanations for the generated consequences at scale
and with high performance. The benchmark should evaluate the extent to which neuro-symbolic reasoners
manifest these desired features. This evaluation is crucial for understanding the limitations of current systems
and guiding future research directions.



G. Singh et al. / Benchmarking Neuro-Symbolic Reasoners: Existing Challenges and A Way Forward 7

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

4. Conclusion and Future Work

We highlighted the significant need for a comprehensive benchmark framework to tackle the challenges tied to
evaluating neuro-symbolic reasoning systems. Merging symbolic logic and neural network-based machine learning
brings great promise, but the lack of common evaluation methods has held back progress in the field. By underlining
the importance of creating benchmarks, our aim for the future is to establish a structured way of evaluating these
systems that can drive the field forward.

When constructing the benchmark, it is important to select reasoning tasks strategically, focusing on challenges
that significantly impact the advancements in the field. Prioritize tasks that are complex and represent the real-world.
The benchmark suite should resemble a versatile toolbox, generating diverse challenges tailored to each task. Given
the rapid evolution of the neuro-symbolic reasoning domain, the adaptability of the benchmark holds significant
importance. It should seamlessly integrate new tasks, ensuring the benchmark remains up-to-date and pertinent.

Acknowledgement

Gunjan Singh and Raghava Mutharaju would like to acknowledge the partial support of the Infosys Centre for
Artificial Intelligence (CAI), IIIT-Delhi, in this work.

References

[1] A.S. d’Avila Garcez, T.R. Besold, L.D. Raedt, P. Földiák, P. Hitzler, T. Icard, K. Kühnberger, L.C. Lamb, R. Miikkulainen and D.L. Silver,
Neural-Symbolic Learning and Reasoning: Contributions and Challenges, in: 2015 AAAI Spring Symposia, Stanford University, Palo Alto,
California, USA, March 22-25, 2015, AAAI Press, 2015. http://www.aaai.org/ocs/index.php/SSS/SSS15/paper/view/10281.

[2] M.K. Sarker, L. Zhou, A. Eberhart and P. Hitzler, Neuro-Symbolic Artificial Intelligence, AI Communications 34(3) (2021), 197–209.
[3] J. Ott, A. Ledaguenel, C. Hudelot and M. Hartwig, How to Think About Benchmarking Neurosymbolic AI?, in: Proceedings of the 17th

International Workshop on Neural-Symbolic Learning and Reasoning, La Certosa di Pontignano, Siena, Italy, July 3-5, 2023, A.S. d’Avila
Garcez, T.R. Besold, M. Gori and E. Jiménez-Ruiz, eds, CEUR Workshop Proceedings, Vol. 3432, CEUR-WS.org, 2023, pp. 248–254.
https://ceur-ws.org/Vol-3432/paper22.pdf.

[4] J. Zhou, G. Cui, S. Hu, Z. Zhang, C. Yang, Z. Liu, L. Wang, C. Li and M. Sun, Graph neural networks: A review of methods and applications,
AI Open 1 (2020), 57–81. doi:10.1016/j.aiopen.2021.01.001.

[5] S. Badreddine, A.S. d’Avila Garcez, L. Serafini and M. Spranger, Logic Tensor Networks, Artif. Intell. 303 (2022), 103649.
doi:10.1016/j.artint.2021.103649.

[6] P. Sen, B.W.S.R. de Carvalho, R. Riegel and A.G. Gray, Neuro-Symbolic Inductive Logic Programming with Logical Neural Networks,
in: Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI 2022, Thirty-Fourth Conference on Innovative Applications of Artificial
Intelligence, IAAI 2022, The Twelveth Symposium on Educational Advances in Artificial Intelligence, EAAI 2022 Virtual Event, February
22 - March 1, 2022, AAAI Press, 2022, pp. 8212–8219. https://ojs.aaai.org/index.php/AAAI/article/view/20795.

[7] F. Xu, H. Uszkoreit, Y. Du, W. Fan, D. Zhao and J. Zhu, Explainable AI: A Brief Survey on History, Research Areas, Approaches and
Challenges, in: Natural Language Processing and Chinese Computing - 8th CCF International Conference, NLPCC 2019, Dunhuang,
China, October 9-14, 2019, Proceedings, Part II, J. Tang, M. Kan, D. Zhao, S. Li and H. Zan, eds, Lecture Notes in Computer Science,
Vol. 11839, Springer, 2019, pp. 563–574. doi:10.1007/978-3-030-32236-6_51.

[8] J. Chen, F. Lécué, Y. Geng, J.Z. Pan and H. Chen, Ontology-guided Semantic Composition for Zero-shot Learning, in: Proceedings of the
17th International Conference on Principles of Knowledge Representation and Reasoning, KR 2020, Rhodes, Greece, September 12-18,
2020, D. Calvanese, E. Erdem and M. Thielscher, eds, 2020, pp. 850–854. doi:10.24963/kr.2020/87.

[9] H.A. Kautz, The Third AI Summer: AAAI Robert S. Engelmore Memorial Lecture, AI Magazine 43(1) (2022), 93–104.
doi:10.1609/aimag.v43i1.19122.

[10] D. Silver, A. Huang, C.J. Maddison, A. Guez, L. Sifre, G. van den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanc-
tot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner, I. Sutskever, T.P. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel and D. Hassabis,
Mastering the game of Go with deep neural networks and tree search, Nat. 529(7587) (2016), 484–489. doi:10.1038/nature16961.

[11] G. Lample and F. Charton, Deep Learning For Symbolic Mathematics, in: 8th International Conference on Learning Representations, ICLR
2020, Addis Ababa, Ethiopia, April 26-30, 2020, OpenReview.net, 2020. https://openreview.net/forum?id=S1eZYeHFDS.

[12] J. Mao, C. Gan, P. Kohli, J.B. Tenenbaum and J. Wu, The Neuro-Symbolic Concept Learner: Interpreting Scenes, Words, and Sentences
From Natural Supervision, in: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9,
2019, OpenReview.net, 2019. https://openreview.net/forum?id=rJgMlhRctm.

[13] J. Gray (ed.), The Benchmark Handbook for Database and Transaction Systems (2nd Edition), Morgan Kaufmann, 1993. ISBN 1-55860-
292-5.

http://www.aaai.org/ocs/index.php/SSS/SSS15/paper/view/10281
https://ceur-ws.org/Vol-3432/paper22.pdf
https://ojs.aaai.org/index.php/AAAI/article/view/20795
https://openreview.net/forum?id=S1eZYeHFDS
https://openreview.net/forum?id=rJgMlhRctm


8 G. Singh et al. / Benchmarking Neuro-Symbolic Reasoners: Existing Challenges and A Way Forward

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

[14] F. Baader, D. Calvanese, D.L. McGuinness, D. Nardi and P.F. Patel-Schneider (eds), The Description Logic Handbook: Theory, Implemen-
tation, and Applications, Cambridge University Press, 2003. ISBN 0-521-78176-0.

[15] B.C. Grau, I. Horrocks, B. Motik, B. Parsia, P.F. Patel-Schneider and U. Sattler, OWL 2: The next step for OWL, Journal of Web Semantics
6(4) (2008), 309–322. doi:10.1016/j.websem.2008.05.001.

[16] P. Hitzler, M. Krötzsch and S. Rudolph, Foundations of Semantic Web Technologies, Chapman and Hall/CRC Press, 2010. ISBN
9781420090505. http://www.semantic-web-book.org/.

[17] B. Makni, M. Ebrahimi, D. Gromann and A. Eberhart, Neuro-Symbolic Semantic Reasoning, in: Neuro-Symbolic Artificial Intelligence:
The State of the Art, P. Hitzler and M.K. Sarker, eds, Frontiers in Artificial Intelligence and Applications, Vol. 342, IOS Press, 2021,
pp. 253–279. ISBN 978-1-64368-244-0. doi:10.3233/FAIA210358.

[18] G. Singh, S. Bhatia and R. Mutharaju, Neuro-Symbolic RDF and Description Logic Reasoners: The State-Of-The-Art and Challenges, in:
Compendium of Neurosymbolic Artificial Intelligence, P. Hitzler and M.K. Sarker, eds, Frontiers in Artificial Intelligence and Applications,
Vol. 369, IOS Press, 2023, pp. 29–63. ISBN 978-1-64368-407-9. doi:10.3233/FAIA230134.

[19] M. Kulmanov, W. Liu-Wei, Y. Yan and R. Hoehndorf, EL Embeddings: Geometric Construction of Models for the Description Logic
EL++, in: Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence, IJCAI 2019, Macao, China, August
10-16, 2019, S. Kraus, ed., ijcai.org, 2019, pp. 6103–6109. doi:10.24963/ijcai.2019/845.

[20] S. Mondal, S. Bhatia and R. Mutharaju, EmEL++: Embeddings for EL++ Description Logic, in: Proceedings of the AAAI 2021 Spring
Symposium on Combining Machine Learning and Knowledge Engineering (AAAI-MAKE 2021), Stanford University, Palo Alto, California,
USA, March 22-24, 2021, A. Martin, K. Hinkelmann, H. Fill, A. Gerber, D. Lenat, R. Stolle and F. van Harmelen, eds, CEUR Workshop
Proceedings, Vol. 2846, CEUR-WS.org, 2021. http://ceur-ws.org/Vol-2846/paper19.pdf.

[21] B. Mohapatra, S. Bhatia, R. Mutharaju and G. Srinivasaraghavan, Why Settle for Just One? Extending EL++ Ontology Embeddings with
Many-to-Many Relationships, CoRR abs/2110.10555 (2021). https://arxiv.org/abs/2110.10555.

[22] B. Xiong, N. Potyka, T. Tran, M. Nayyeri and S. Staab, Faithful Embeddings for EL++ Knowledge Bases, in: The Semantic Web - ISWC
2022 - 21st International Semantic Web Conference, Virtual Event, October 23-27, 2022, Proceedings, U. Sattler, A. Hogan, C.M. Keet,
V. Presutti, J.P.A. Almeida, H. Takeda, P. Monnin, G. Pirrò and C. d’Amato, eds, Lecture Notes in Computer Science, Vol. 13489, Springer,
2022, pp. 22–38. doi:10.1007/978-3-031-19433-7_2.

[23] A. Eberhart, M. Ebrahimi, L. Zhou, C. Shimizu and P. Hitzler, Completion Reasoning Emulation for the Description Logic EL+, in:
Proceedings of the AAAI 2020 Spring Symposium on Combining Machine Learning and Knowledge Engineering in Practice, AAAI-MAKE
2020, Palo Alto, CA, USA, March 23-25, 2020, Volume I, A. Martin, K. Hinkelmann, H. Fill, A. Gerber, D. Lenat, R. Stolle and F. van
Harmelen, eds, CEUR Workshop Proceedings, Vol. 2600, CEUR-WS.org, 2020. http://ceur-ws.org/Vol-2600/paper5.pdf.

[24] M. Ebrahimi, A. Eberhart and P. Hitzler, On the Capabilities of Pointer Networks for Deep Deductive Reasoning, CoRR abs/2106.09225
(2021). https://arxiv.org/abs/2106.09225.

[25] B. Makni and J.A. Hendler, Deep learning for noise-tolerant RDFS reasoning, Semantic Web 10(5) (2019), 823–862. doi:10.3233/SW-
190363.

[26] S. Farzana, Q. Zhou and P. Ristoski, Knowledge Graph-Enhanced Neural Query Rewriting, in: Companion Proceedings of the ACM Web
Conference 2023, WWW 2023, Austin, TX, USA, 30 April 2023 - 4 May 2023, ACM, 2023, pp. 911–919. doi:10.1145/3543873.3587678.

[27] A. Hogan, E. Blomqvist, M. Cochez, C. d’Amato, G. de Melo, C. Gutierrez, S. Kirrane, J.E.L. Gayo, R. Navigli, S. Neumaier, A.N. Ngomo,
A. Polleres, S.M. Rashid, A. Rula, L. Schmelzeisen, J.F. Sequeda, S. Staab and A. Zimmermann, Knowledge Graphs, ACM Computing
Surveys 54(4) (2022), 71:1–71:37. doi:10.1145/3447772.

[28] Y. Guo, Z. Pan and J. Heflin, LUBM: A Benchmark for OWL Knowledge Base Systems, Journal of Web Semantics. 3(2–3) (2005), 158–
182.

[29] L. Ma, Y. Yang, G. Qiu Z .and Xie, Y. Pan and S. Liu, Towards a Complete OWL Ontology Benchmark, in: The Semantic Web: Research
and Applications, Springer Berlin Heidelberg, Berlin, Heidelberg, 2006, pp. 125–139.

[30] G. Singh, S. Bhatia and R. Mutharaju, OWL2Bench: A Benchmark for OWL 2 Reasoners, in: The Semantic Web - ISWC 2020 - 19th
International Semantic Web Conference, Athens, Greece, November 2-6, 2020, Proceedings, Part II, J.Z. Pan, V.A.M. Tamma, C. d’Amato,
K. Janowicz, B. Fu, A. Polleres, O. Seneviratne and L. Kagal, eds, Lecture Notes in Computer Science, Vol. 12507, Springer, 2020,
pp. 81–96. doi:10.1007/978-3-030-62466-8_6.

[31] B. Parsia, N. Matentzoglu, R.S. Gonçalves, B. Glimm and A. Steigmiller, The OWL Reasoner Evaluation (ORE) 2015 Competition Report,
Journal of Automated Reasoning 59(4) (2017), 455–482. doi:10.1007/s10817-017-9406-8.

[32] J. Lehmann, R. Isele, M. Jakob, A. Jentzsch, D. Kontokostas, P. Mendes, S. Hellmann, M. Morsey, P. Van Kleef, S. Auer and C. Bizer,
DBpedia - A Large-scale, Multilingual Knowledge Base Extracted from Wikipedia, Semantic Web Journal 6 (2014). doi:10.3233/SW-
140134.

[33] F.M. Suchanek, G. Kasneci and G. Weikum, YAGO: A Core of Semantic Knowledge Unifying WordNet and Wikipedia, in: Proceedings
of the 16th International Conference on World Wide Web, WWW ’07, Association for Computing Machinery, New York, NY, USA, 2007,
pp. 697–706–. ISBN 9781595936547. doi:10.1145/1242572.1242667.
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