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Abstract. Artificial Intelligence (AI) is widely acknowledged as a new kind of sci-
ence that will bring about (and is already enabling) the next technological revolu-
tion. Virtually every week, exciting reports come our way about the use of AI for
drug discovery, game playing, stock trading and law enforcement. And virtually all
of these are mostly concerned with a very narrow technological capability, that of
predicting future instances based on past instances. Although it is now recognized
that this type of statistical associations is limited in its ability to understand the
world and model its knowledge, there is still a lot of criticism and hesitancy about
the use of symbolic logic to accomplish or assist in a broader vision for AI. In this
article, we look at some of the assumptions held and circulated in social media
about logic and point out that there are deep misunderstandings. By arguing that
symbolic logic is more flexible than believed by non-experts, we make a case for
Neuro-Symbolic AI o↵ering the best of both worlds.
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They don’t have intelligence. They have what I call ”thintelligence”. They see the
immediate situation. They think narrowly and they call it being focused. They don’t see
the surround. They don’t see the consequences. – Michael Crichton, Jurassic Park

1. Introduction

Artificial Intelligence (AI) is widely acknowledged as a new kind of science that will
bring about (and is already enabling) the next technological revolution. Virtually every
week, exciting reports come our way about the use of AI for drug discovery, game play-
ing, stock trading and law enforcement. And virtually all of these are mostly concerned
with a very narrow technological capability, that of predicting future instances based on
past instances.

Although it is now recognized that this type of statistical associations is limited in
its ability to understand the world and model its knowledge, there is still a lot of criticism
and hesitancy about the use of symbolic logic to accomplish or assist in a broader vision
for AI. In this article, we look at some of the assumptions held and circulated in social
media about logic and point out that there are deep misunderstandings about how logic
works and how flexible it is. We examine some of the criticisms also raised by Geo↵



Hinton. Following these, we make a case for where Neuro-symbolic AI can o↵er the best
of both worlds, but which requires us to acknowledge that logic is a lot more flexible
than believed by many of its critics.

2. Thintelligence

Identifying statistical patterns, correlations, and associations are, without doubt, ex-
tremely useful. In the first instance, they are needed in numerous applications to inspect
features and properties of interest in observed data.

This type of AI is very useful. It drives applications in recommendation systems,
for example, and likely is more than su�cient for such applications. For example, while
searching for ”how to raise lambs” on an online bookstore, we might be a little disap-
pointed if it suggests ”silence of the lambs” by Thomas Harris, and somewhat annoyed
if it suggests cook books on ”how to cook lamb”, but it is unlikely to have long-term ef-
fects. This type of AI might also be useful but somewhat nebulous for fast-tracking, say,
job applications, provided these models are adjusted for bias, and a human intervenes
and interprets the outcome and determines how to act further. This type of AI was largely
believed to be su�cient for vision systems [88], until it was realised that self-driving
cars fail stupendously, and that the state-of-the-art systems can be fooled in strange and
unnatural ways [36].

Be that as it may, this is a very narrow view of AI capabilities. Indeed, AI, as un-
derstood by both scientists and science fiction writers, is clearly much broader. In fact,
pattern recognition, machine learning and finding associations by mining data are closely
related subfields of AI. Put di↵erently, from first principles, what distinguishes big-data
analysis from AI is that the set of capabilities we wish to enable with the latter. We are not
interested in a “thintelligence”, but rather a general-purpose, autonomous computational
entity that, in the very least, has agency.

3. Symbolic logic is old-fashioned?

However, ”modern” AI has moved on, we are told. The idea of using symbolic logic
is old-fashioned, and the area of knowledge representation defined over symbolic logic
is now a↵ectionately (or perhaps pejoratively) called good old-fashioned AI, or GOFAI
short.

In the early days of AI, John McCarthy put forward a profound idea to realise artifi-
cial intelligence (AI) systems [68]: he posited that what the system needs to know could
be represented in a formal language, and a general-purpose algorithm would then con-
clude the necessary actions needed to solve the problem at hand. The main advantage is
that the representation can be scrutinised and understood by external observers, and the
system’s behaviour could be improved by making statements to it. Numerous such lan-
guages emerged in the years to follow, but first-order logic remained at the forefront as
a general and powerful option [72]. Propositional and first-order logic continue to serve
as the underlying language for several areas in AI, including constraint satisfaction, au-
tomated planning, database theory, ontology specification, verification, and knowledge
representation.



And yet, ”modern” AI has decided that these e↵orts are superfluous, or at least easily
replaceable once a training dataset has been created. An an infamous and inflammatory
instance, Turing-award winner Geo↵ Hinton remarked that fixating on symbols was a
waste of time, analogous to funding research on gasoline engines. Implicit here is the
argument that we clearly need to be focussing on electric engines, presumably analogous
to deep learning.1 In 2020, he reiterated his position and suggested that:2 “Deep learning
is going to be able to do everything.” Strangely, his position seems to have changed over
the years,3 but it is hard to get a sense of what kind of mixture of symbols vs learning
he is advocating for. For example, in a very recent interview after quitting his position at
Google, the following transpired:4

The dominant idea at the time, known as symbolic AI, was that intelligence involved
processing symbols, such as words or numbers.

But Hinton wasn’t convinced. He worked on neural networks, software abstractions
of brains in which neurons and the connections between them are represented by code. By
changing how those neurons are connected — changing the numbers used to represent
them — the neural network can be rewired on the fly. In other words, it can be made to
learn.

“My father was a biologist, so I was thinking in biological terms,” says Hinton.
“And symbolic reasoning is clearly not at the core of biological intelligence.”

“Crows can solve puzzles, and they don’t have language. They’re not doing it by
storing strings of symbols and manipulating them. They’re doing it by changing the
strengths of connections between neurons in their brain. And so it has to be possible to
learn complicated things by changing the strengths of connections in an artificial neural
network.”

Almost every scientist loves the appeal of a single model, and hence, the search for
the theory that unifies all observational data, as seen in physics with string theory, for
example [25]. And by extension, the appeal of purely neural model is attractive indeed.
However, there is lots to debate here. Firstly, deep learning models are loosely inspired
by the brains but not fully accurate representations (yet) [86,71]. Secondly, there is the
notion of innateness [89], and how much evolution might helps the brain in understand-
ing and processing the world in a structured manner. Finally, we must bear in mind that
we still lack a complete understanding of how the neurons of a bird (let alone a human)
are wired. Merely knowing that neural weights enable birds to solve puzzles and recog-
nize faces does not necessarily imply that our implementation of their neurons should
resemble or possess similar properties, at least to a dependable extent.

But putting such issues aside, it is also worth noting that proponents of the sym-
bolic approach to AI never explicitly claimed the existence of symbolic representations
within our minds. In essence, the symbolic approach o↵ers a coherent strategy for: (a)
executing symbolic expressions, and (b) comprehending the (idealized) implications of
one’s knowledge, as per inference rules stipulated in some logic. As argued by Levesque
[60], this is not a novel concept, as Leibniz articulated centuries ago that certain types of

1https://twitter.com/tabithagold/status/1070736319901519876
2https://www.technologyreview.com/2020/11/03/1011616/ai-godfather-geo↵rey-hinton-deep-learning-will-

do-everything/
3https://www.noemamag.com/deep-learning-alone-isnt-getting-us-to-human-like-ai/
4https://www.technologyreview.com/2023/05/02/1072528/geo↵rey-hinton-google-why-scared-ai/



thinking adhere to symbolic processing. Hence, why not employ an algebraic treatment
for cognition?

Once again, the allure of a purely neural approach is understandable, given its sim-
plicity and the sense of a ”unified theory” it evokes.

By taking a step back, we realize that until the past few centuries, our understanding
of the brain and neurons was limited. Yet, during this time, we were able to calculate,
develop number theory, construct calculators, and ultimately create computers. Imagine
if we had solely dedicated ourselves to constructing elaborate brain replicas in the hopes
that they could handle tax calculations for us. This underscores the significance of the
symbolic approach, which o↵ers an idealized and accurate method for certain forms of
reasoning. There is a popular analogy [15] suggesting that we need not build wings and
feathers to build airplanes; comprehending the principles of aerodynamics is enough. So,
why shouldn’t the development of a theory of artificial cognition be just as relevant for a
type of AI that is behaviorally similar to humans in some instances, without necessarily
resorting to a brain-like architecture?

Goe↵ Hinton, of course, is not alone is being dismissive about symbols. There are
many other more severe views on the relevance of logic for modern AI, but in what
follows, we will survey and respond to a selected set of misunderstandings extracted
from the social media platform Twitter.

4. There is a dichotomy

A common view held by many in the broader community that there is an inherent di-
chotomy between symbolic logic and machine learning, the former focused on discrete
structures and the latter focused on continuous representations. In fact, even scientists
within the AI community make this distinction [79], and suggest that logic is not really
appropriate for machine learning. Consider, for example, the tweets by James McDer-
mott.

This, admittedly, is not even necessarily negative on the topic of symbols, but just
points out that: (a) symbolic processing is a separate topic of study that can be indepen-



dently done from symbolic logic, and (b) symbolic logic as used in AI is focused on
discrete symbols.

What we are seeing here is a narrowing of the use of ”logic” simply as classical
logic – say, as introduced in [29].

But going back to the history of the use of logic in AI [72], these views do not quite
hold. For instance, John McCarthy himself was concerned about probabilities and the
use of it in knowledge representation. However, he makes a very salient point that we
need to think carefully how numbers and first-order sentences fit together. For example,
he argues [69]:

(i) It is not clear how to attach probabilities to statements containing quantifiers in
a way that corresponds to the amount of conviction people have.

(ii) The information necessary to assign numerical probabilities is not ordinarily
available. Therefore, a formalism that required numerical probabilities would be episte-
mologically inadequate.

His point, simply, is that we should not be expected to put probabilities on every
formula; sometimes it su�ces to say that p _ q holds without saying which, and by how
much. Moreover, if we assign a probability of r on that formula, or to, say, 9xP(x), such
an assertion in itself does not provide any additional information on how to further assign
a probability to p, q, P(a), and so on. Many popular languages for logic and probability,
including Markov logic networks [79], ProbLog [77] and BLOG [70], do not allow this
level of flexibility. In fact, this requires a di↵erent type of machinery altogether, one
which permits multiple prior distributions [12]. In contrast, in ProbLog, it is assumed
that there is a single distribution over the model, and not specifying a probability on a
disjunction might be interpreted as a hard constraint that is true in all possible worlds.

Admittedly, it is true that the knowledge representation area of AI largely focuses
on discrete symbols and a Boolean interpretation. But, on the other hand, it’s been close
to 60 years since we have fuzzy logic [91], among others [53]. And as suggested above,
probability measures [31] on first-order structures and other proposals on logic and un-
certainty [79,77,70,12] allow us to mix probability and possibility theory in a logical
language in di↵erent ways [26].

The one last point on the criticism is that although it is usual to talk about discrete
things in logical AI, it is not true that they need to do so. In fact, more generally, although
is true that logical formulas are discrete structures, they can very easily also express
properties about countably infinite or even uncountably many objects [8]. Reasoning
about real numbers have long been an area of interest in mathematical logic [51], going
back to Tarksi.

5. Logic only interprets symbols one way

There seems to be a general confusion in the non-AI community between syntax and
semantics, or more accurately, that the syntax is tied to semantics in a certain way, as
seen in the classical interpretation for propositional logic.

There are many systems for writing down symbols, and interpreting logical symbols
and formulas built up these symbols. Classical ideas include propositional logic (Boolean
symbols, A and B is true i↵ A is true and B is true) and first-order logic, which uses
quantifiers. In first-order logic, for instance, there is a domain of discourse which stands



for the objects in the world. We then say that 9P(x) is true if and only if there is some in-
dividual from the domain of discourse such that the property P is true for that individual.
First-order logic can also use functions over reals, as seen in satisfiability modulo theory
[5].

However, there is also modal logic [56], which can capture possibilities, beliefs, and
intentions [81]. A variant of modal logic with numbers on worlds can lead to probabilistic
logics [39]. Fuzzy logics map Boolean symbols to real numbers, leading to real-valued
semantics for connectives. For example, if A and B get values between 0 and 1, then A
and B gets a value of 1 i↵ min(A, B) is 1. Moreover, the conjunction could also get a
value between 0 and 1.

These are all part and parcel of symbolic logic. The choice of the language, the
choice of the semantic rules that we use over the well-defined formulas, along with its
computational properties such as decidability are all put together in a logical framework
[41]. Moreover, once a logical framework is considered, we could choose to prove logi-
cal entailments either by considering assignments to the variables and seeing if the con-
sequent follows, or by applying inference rules established in a proof theory. This leads
to the choice of doing one of: theorem proving [42], model checking [4], SAT solving
[5], and model counting [35].

6. Monotoncity

Classical logic is monotonic. That is, if ↵1, . . . ,↵k |= �, then it cannot be the case
that adding new knowledge, say, ↵0 forces us to retract �: formally, it has to be that
↵1, . . . ,↵k,↵0 |= � also.

John McCarthy was concerned about the problem of monotonicity and wondered
how we might deal with exceptions and abnormality. The problem of monotonicity is so
ubiquitous, it even comes up in the formulation of automated planning [78]. For example,
imagine that you have an action to paint a box blue and another action that pushes the
object. Let us say we paint the object and next, we push the object. When we execute the
second action, it is implicit that the color of the object does not change. So we would have
to somehow codify not only what the e↵ects of the push action are, but also what the non-
e↵ects are. And if we start writing down all the non-e↵ects, there could be exponentially
many. Moreover, there are various preconditions that must hold for us to be able to push
the object. For instance, we should be strong enough to push it, we must not be holding
other objects, we are presumably operating under reasonable gravity assumptions, and so
on. And if we start expressing all of them, it again looks like a hopeless task. Yet under
some assumptions, we can assume so-called causal completeness [78] in the sense that
the conditions provided are both necessary and su�cient for describing the action.

Of course, if we don’t make that assumption, then the only way to deal with this is
to allow for a lot of usual cases, but also allow for unusual and exceptional cases using
some notion of abnormality. All of this requires notions of non-monotonicity.

There is a general view that non-monotonicity is not needed and thereby a wasted
e↵ort, or already solved. Neal Parikh’s tweet, for example, has a view that non-monotonic
reasoning is a wasted e↵ort.

This seems to be a fairly superficial remark because there is no evidence that the
problems identified in the non-monotonic reasoning community have been successfully



addressed using any technique. It is, of course, true that many machine learning mod-
els when trained on existing data, they can produce the same patterns and report on the
abnormalities seen in that data [55,67]; however there is no general mechanism to deal
with such ideas. Moreover, non-monotonic logic reasoning has given us notions like sta-
ble model semantics [34] which now powers very recent approaches to neuro-symbolic
AI [90]. Interestingly, non-monotonic semantics can also allow us to capture cycles in
graphs [23], which ordinarily requires recursion using, say, second-order logic.

7. Di↵erentiability

In so much as recent approaches to machine learning can be summarized, di↵erentiability
is a key concept. But it is widely held that logic cannot play a role in this. For example,
Turing Award winner Yann LeCunn quips [59]:

How can machine reason and plan in ways that are compatible with gradient-based
learning?

Our best approaches to learning rely on estimating and using the gradient of a loss,
which can only be performed with di↵erentiable architectures and is di�cult to reconcile
with logic-based symbolic reasoning.

But as indicated by the points above, this view is simply uniformed. In fact, as al-
ready shown, probabilities as well as real arithmetic can be mapped on to logical sym-
bols and this means that probabilistic and real-valued semantics seem to naturally lead to
di↵erentiability. There is a longstanding view that logic and probability are compatible
with each other [18]. And if you look at recent considerations on reasoning about prob-
abilities using logic-based solvers, such as those based on weighted model counting [3],
it is very hard to argue for a dichotomy. Consider the position in Guy Van Den Broeck’s
tweet, for example.

At this point, there are plenty of approaches that explicitly use logic for the training
of neural networks, especially in the context of regularization and di↵erentiability. This
started with the work of UCLA’s Semantic Loss [32] and KU Leuven’s DeepProbLog
[66], both of which adjust the loss function of the deep learning model based on a logical
encoding of the constraints and program, respectively. There are recent approaches that
are based on either proposition logic with possible worlds or real-valued propositions
[45]. Providing arithmetic constraints to the training of deep learning networks, and en-



suring consistency with the provided domain knowledge is also an important problem
for areas like physics [85].

However, it would be remiss not to point out that just because di↵erentiability seems
to be an important ingredient in the training of machine learning models, it does not
mean that we expect every scientist in the area of logic to play game. There is still deep
and rigorous work to be done on the integration of logical querying (e.g., computational
e↵ort needed to evaluate queries on a large knowledge basis [64]) and probability [7],
for example. On the representation side, there are important issues to grapple with, such
as languages that reason about the cardinality of reals and the consistency of the axiom-
atization of natural numbers [62]. Moreover, modal logics like temporal logics and dy-
namic logics become useful for deep learning-based endeavors as we navigate to more
open-ended problems. For example, in [48], temporal logic formulas are used to train
deep reinforcement learning agents. In [83], large language models are used to learn dy-
namic epistemic properties [10]. And finally, in [49], a temporally extended semantic
loss function is considered.

8. What about ”human-like” semantic definitions?

The most well-studied semantics, or perhaps more accurately, the most widely-used se-
mantics in computer science, remains classical [17]. That is, atoms are accorded values
of either 0 or 1, and so formulas become Boolean functions. If modalities are introduced,
such as time and actions [30], then we look at sequences of models: either a linear se-
quence or a tree-like sequence [78], for example.

But as mentioned above, there are also approaches where a degree of truth is ac-
corded to formulas, either by allowing the atoms themselves to have non-binary values
[91] or by according probabilities or other kinds of measures for complex formulas [26].

All of these notions are explored by establishing some kind of well-definedness,
and logicians explore the implications of those conditions. For example, intuitionistic
logic looks to weaken material implication [27]. Non-classical belief logics control the
proof-depth of logical reasoners [63], and so on.

There is an informal argument often made that perhaps these systems are too pre-
cise. Perhaps on training neural networks with real-world observations, they might ex-
hibit more human-like reasoning capabilities. But the evidence for this has not yet been
established. Moreover, is such a feature desirable? Consider, for example, an informal
inquiry by Oxford philosopher Luciano Floridi asks:5

what’s the name of the daughter of Laura’s mother?
ChatGPT (even GPT-4, the latest and best) comes back with something to the e↵ect

of: ”I’m sorry, I don’t have personal information about specific individuals.”
Analogously, the computer scientist Vincent Conitzer tried out the below puzzle:6
I put one apple in a bag. Then I put either one pear or two bananas in the bag. Then

I remove one piece of fruit. Then I remove all the remaining pieces of fruit from the bag.
Based on what I told you, is it possible to know exactly how many pieces of fruit

remain in the bag?
Here’s what we get:

5https://twitter.com/Floridi/status/1635951391968567296?s=20
6https://twitter.com/conitzer/status/1636156048347111425?s=20



Based on the information provided, it is not possible to know exactly how many
pieces of fruit remain in the bag after removing one piece of fruit and then removing all
remaining pieces. This is because there are two possible scenarios, but we don’t have
enough information to determine which one took place:

1. One apple and one pear were in the bag. If you removed one piece of fruit, there
would be one piece left. After removing all remaining pieces, there would be 0
pieces left.

2. One apple and two bananas were in the bag. If you removed one piece of fruit,
there would be two pieces left. After removing all remaining pieces, there would
also be 0 pieces left.

In both scenarios, after removing one piece of fruit and then removing all remaining
pieces, there are no pieces of fruit left in the bag.

But apparently in a follow-up reply to that tweet, GPT-4 seems to get it correct.
What can we make of all of this? These models are clearly not reliable, or consistent

[50]. Perhaps this what prompted Stephen Wolfram to consider a systematic integration
of ChatGPT and Wolfram Alpha.7

There are, of course, plenty of other examples for integrating LLMs and other sym-
bolic solvers, and this is an exciting area for the future of logic, as seen in neuro-symbolic
AI [92]. However, the ”native” capabilities are clearly limited. An intriguing hypothesis
put forward by eminent AI scientist Subbarao Kambhampati is this:8

I think many of the claims about LLM’s reasoning capabilities miss the point that
LLM’s are not just trained on ”facts” but also, quite often, the deductive closure of those
facts. Thus reasoning becomes (approximate) retrieval.

If this is the case, these models do not reason at all, but simply see for patterns of
conclusions, which might limit, say, the number of inference steps, or how involved the
reasoning is. However, what about consoling ourselves with the idea that the training
data might include all such deductions, in which case, LLMs might be su�cient? Sadly,
in a critical examination [93], it is shown that LLMs likely pick up unnecessary statistical
features of logical inputs, and their logical reasoning abilities may not be sound across
di↵erent distributions on background theories, and thus, likely not complete.

Nonetheless, it is worth noting that, strictly speaking, we do not require that the
semantics be given by humans, or that they be hand-written. Symbols can obtained from
low-level data (via symbol grounding). The use of symbols in AI also does not mean that
folks using symbolic logic assume humans manipulate symbols in their head.

Consider the observation by Simone Scardapane in his tweet, for example. So the
semantics of connectives and formulas may be built up from context, social environment
and language use. But of course, there is also work in logic on paraconsistency and
inconsistency [14]!

Ultimately, we have a whole range of language choices and semantic choices to
work with. But does it still make sense to bother with classical semantics? We would
argue yes. For example, (a) it is a well-defined mathematical model, (b) with the use of
modalities and/or non-classical semantics, we can relate di↵erent systems, (c) we do not
really know what semantics best approximates human reasoning, (d) we may not want
mathematical truths that play fast and loose with inevitable conclusions just because we
think humans might have some cognitive biases and entertain inconsistencies, and (e) the

7https://writings.stephenwolfram.com/2023/03/chatgpt-gets-its-wolfram-superpowers/
8https://twitter.com/rao2z/status/1666294366720360449?s=20



science of robust AI is still out there. Let us investigate the properties of well-defined
objects with patience and rigour.

9. Symbols and deep learning can be complementary

As already hinted above, symbolic logic can play an important role in training deep learn-
ing models but also in integrating reasoning as a post-hoc process or as a metalinguistic
paradigm. That is, we can ensure that the distribution of the trained network respects do-
main constraints [45]. We can extract rules from trained models and reason about them
outside the framework of the network [75]. Or we can use the outputs of the network
as inputs to a computational paradigm such as probabilistic programming [66]. There is
very interesting work on the semantics of programs that inherently support some notion
of di↵erentiation [1]. This is an object of intense theoretical study that can have con-
sequences on the types of distributions that are expressible in programming languages
[84]. So, this theory has far-reaching e↵ects on what type of probabilistic models can be
modelled e↵ectively.

Overall, symbols and DL need not compete with each other: they can be comple-
mentary. Perhaps the most representative example of this is the burgeoning field of neuro-
symbolic AI [33], which has come to encompass things like neural program induction
[58], neural theorem improvers, and di↵erentiable logics [92].

10. Symbolic logic as meta-theory

An argument made previously [9] is that symbolic logic can be used to formalize notions
currently out of the purview of standard machine learning. These include things like the
semantics of involved probabilistic programming languages [84] and understanding the
limits of di↵erentiable logics, but it can also pertain to a range of more exotic topics.
For example, it is very common in AI applications these days to require frameworks for
multi-agent reasoning [2]. In explainable AI [38], in particular, we might require that the
robot holds beliefs about the human agent [52]. Modal logics study such phenomena.

Moreover, complex AI systems are not going to be purely based on providing pre-
dictions. They will involve search, constraint reasoning, and planning [80]. This has ne-
cessitated new approaches for compositionality [84] and modularity [87]. In some recent



work, for instance, it was noted that weighted model counting [35], which provides the
foundation for mapping Bayesian inference to SAT solvers, can be upgraded to also rea-
son about maximization and minimization of properties [54], leading to languages where
a number of di↵erent AI sub-areas can be unified [11].

11. High-level knowledge

At a number of recent AI events, Daniel Kahneman has been invited to discuss his very
famous distinction of the so-called system 1 versus system 2 type cognition in humans.9
This is owing to the fact that AI scientists, for a very long time, have been deliberating on
the appropriate way to abstract away low-level perception data with high-level concept
knowledge, perhaps going back to Shakey [57]. Providing mechanisms as well as formal
semantics for abstraction remains a topic of theoretical interest even today [46].

In the particular case of deep learning systems, an obvious agenda point is how
do we define abstract concepts, either extracted directly from these systems or defined
externally to coordinate and interoperate with these systems.

Consider the tweet by Gary Marcus, for example. Indeed, it is widely acknowledged
that concepts such as time, abstraction, and causality will play a key role in designing an
AI that has a world model that is rich enough to be interpreted in a way we would find
reasonable [16].

Although there is some work on providing a causal semantics to deep learning sys-
tems [65], it is still in the early years and studied in a limited way. In contrast, we have
very well-studied models of time [76] and causality with symbolic calculi [78,40,43]. It
seems irresponsible to not utilise these advances simply because they are symbolic, and
hence deemed ”old-fashioned.”

On a related note, symbols can be used as abstract identifiers for human-in-the-loop
systems [52], and/or interactive machine learning especially when you have non-expert

9https://vimeo.com/390814190



stakeholders engaging with predictors trained on high-dimensional data. See the position
in Subbrao Kambhampati’s tweet, for example.

12. Symbolic logic can instantiate new methods of inference

One remark that has been left implicit and referred to in the above discussion is the idea
that precisely because of the close relationship between logic and probability [18], it is
possible to use logic-based solvers for doing probabilistic reasoning.

This is primarily seen in weighted model counting [35], which is an extension of
SAT solving to identify all possible satisfying assignments [3]. There is also an extension
of this strategy to deal with continuous properties via so-called weighted model integra-
tion [13]. Interestingly, because it was observed that certain types of these more involved
operations beyond SAT exist, it is attractive to construct a data structure for the logical
formula at hand. This led to the area of knowledge compilation [22]. A key result of this
sub-area is the explicit construction of these data structures or circuits [21].

It turns out that circuits provide a new way of doing inference with probabilistic
models with the following properties: you pay a one-time cost of compiling the represen-
tation, such as a Bayesian network, into such a circuit, and then every query afterwards
can be done in time polynomial in the size of the circuit. See the tweets by Kristian
Kersting and Antonio Vergari, for example.

Overall, this is a new and attractive way of doing probabilistic reasoning and has
even led to new approaches to inference in probabilistic programming [47]. These cir-
cuits can also be learned from data [61], which again leads to a new paradigm of learn-
ing probabilistic models. Finally, there is also some work on approximate inference with
weighted model counting [19], which provides more certifiable guarantees than varia-
tional inference.

13. Symbols do not always need a logic

It is common to come up with a new programming language, defining only the interpreter
and the compiler, without an explicit semantics in the sense of formal logic [28]. In this
regard, there is a lot of work in Neuro-symbolic AI on learning programs [58] or other
kinds of symbolic artifacts without an explicit logic. This is possible, at least until the
area matures.



It should be noted, however, that without a clear specification of how compositions
and combinations of expressions should be interpreted and evaluated, this type of use of
symbols is somewhat ad hoc. However, while the area is still growing, we expect to see
more of such constructions. We would then need to consider whether a semantics can be
designed post-hoc or synthesized in some fashion by mapping it back to an existing logic
[6]. Such a move is especially desirable if we want to check for the internal consistency
of the impromptu programming language.

14. Wrapping up

In this article, we looked at a few of the misunderstandings that arise when considering
the relevance and use of symbolic AI in modern AI systems. We have only covered some
of the ground that we feel frequently comes up, but we have not discussed other relevant
issues.



For example, one area where symbolic logic is widely used in many stochastic sys-
tems [20] is the verification of safety properties [82], and even ethical principles [24].
This is a vast area, spanning multiple conferences with many scientific bodies dedicated
to it. Indeed, in this article, we have mostly focused on the concept of semantics and its
importance.

As we discussed, one area where concerns about the use of logic seem to disappear
is neuro-symbolic AI. Neuro-symbolic AI holds a lot of promise because it can o↵er
interesting ways to combine symbolic logic and deep learning, and build on the success
of both. And like the maxim: ”the whole is greater than the sum of the parts,” such
an integration may not simply be the communication of outputs in a divorced way, but
could involve a deeper type of synthesis [44]. Some approaches have dealt with loss
functions, while others have focused on post-hoc logical reasoning or extracting rules
from networks. All of these approaches are interesting in their own right.

There is also a trade-o↵ between the complexity and level of detail of the logical
knowledge and how e↵ectively it can integrate with a learning system. For example, pa-
pers focusing on loss functions typically deal with smaller-sized formulas and constraints
[45], while works exploring the integration of learning with knowledge graphs often con-
sider ontologies with more than a hundred or even a thousand nodes [73]. There is a
range of possibilities, and it may be challenging to determine the correct approach. Per-
haps there is no one-size-fits-all solution, and the combination of logic and deep learning
can vary depending on the application.

Regardless of the specific approach, it is clear that we need to understand the princi-
ples of logical languages and semantics to ensure that resulting mathematical objects are
well-defined with desired properties. This appreciation is essential for both theoretical
exploration and practical applications.

It should be noted that there is a case to be made for expressive representations.
For example, some might come away feeling that the best way to approach the future of
neuro-symbolic AI is to focus on very limited languages. But such an view may not be
fruitful in the long term. For example, it is widely understood that first-order is useful
for generalized assertions [60], and modal logics for time and multi-agent beliefs [30].
In general, the language is critical for capturing the domain correctly. In a statement
remarkably similar in spirit, Judea Pearl writes [74]:

This is why you will find me emphasizing and reemphasizing notation, language,
vocabulary and grammar. For example, I obsess over whether we can express a certain
claim in a given language and whether one claim follows from others. My emphasis on
language also comes from a deep conviction that language shapes our thoughts. You
cannot answer a question that you cannot ask, and cannot ask a question that you have
no words for.

And, as with Pearl and the knowledge representation community more generally, we
will identify with “representation first, acquisition second.”

To sum up, there is a lot to be gained by the relating the mathematical foundations
of logic and deep learning. And the benefit is not purely for the logician, but also for the
deep learning researcher who wants to think more broadly than prediction with big data.
Scientists working on logic and language should be allowed to work on problems that
seem scientifically relevant without necessarily linking up to or competing with whatever
the zeitgeist of machine learning is.



We should, of course, celebrate successes — its neither an accident nor misplaced
opportunism that logic/programming language folks are interested in learning and are
eager to understand the latest and best [37]. Moreover, what combination of logic and/or
learning we need for general AI is not well-understood yet. We cannot point to the exact
approach or balance of innateness vs tabula rasa we need for general AI, because we sim-
ply do not know. We can only loosely articulate requirements (e.g., correct, fair and safe
by design), capabilities (e.g., ability to reason about causality, time and space models)
and desiderata.

Experts can get excited about what works – the success of AlphaGo, as well as large
language models, is kind of a success for AI, although of course it opens up questions
about generality and correctness. However, there is no need to dismiss other approaches.
Indeed, what we do not need are folks (especially Turing award winners like Geo↵ Hin-
ton) mocking other areas (the gasoline analogy), or others, such as Tabitha Goldstaub,
with 16000+ followers sharing derision with conviction.10
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In this paper, we have freely used screenshots of tweets, but have not reached out

to the users for their permission because we have assumed these tweets are public, and
hence they can be cited like a website.

Our focus on views of AI from social media may seem unusual; however, Twitter
has turned into a dominant space for public statements by leading experts. Although
they are not as iron-clad as peer-reviewed position papers, we view them as statements
all the same: positions expressed for peers. Of course, it is possible some may wish to
retract statements made in tweets, saying that the space limitations forced them to make
an informal remark that could be easily misunderstood, or that there was implicit irony.
This is why we have included screenshots in most instances, or otherwise linked to them,
and admit that we are taking those statements at face value and apologise if we have
misrepresented an individual’s position.
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[51] D. Jovanović and L. De Moura. Solving non-linear arithmetic. ACM Communications in Computer

Algebra, 46(3/4):104–105, 2013.
[52] S. Kambhampati. Challenges of human-aware ai systems. AI Magazine, 41(3), 2020.



[53] M. Katz. Łukasiewicz logic and the foundations of measurement. Studia logica, 40:209–225, 1981.
[54] A. Kimmig, G. V. den Broeck, and L. D. Raedt. Algebraic model counting. CoRR, abs/1211.4475, 2012.
[55] V. Kocijan, E. Davis, T. Lukasiewicz, G. Marcus, and L. Morgenstern. The defeat of the winograd

schema challenge. arXiv preprint arXiv:2201.02387, 2022.
[56] S. Kripke. A completeness theorem in modal logic. Journal of Symbolic Logic, 24(1):1–14, 1959.
[57] B. Kuipers, E. A. Feigenbaum, P. E. Hart, and N. J. Nilsson. Shakey: from conception to history. Ai

Magazine, 38(1):88–103, 2017.
[58] B. M. Lake, R. Salakhutdinov, and J. B. Tenenbaum. Human-level concept learning through probabilistic

program induction. Science, 350(6266):1332–1338, 2015.
[59] Y. LeCun. A path towards autonomous machine intelligence version 0.9. 2, 2022-06-27. Open Review,

62, 2022.
[60] H. J. Levesque. Thinking as Computation: A First Course. MIT Press, 2012.
[61] Y. Liang, J. Bekker, and G. Van den Broeck. Learning the structure of probabilistic sentential decision

diagrams. In Proceedings of the 33rd Conference on Uncertainty in Artificial Intelligence, pages 134–
145, 2017.

[62] D. Liu, Q. Feng, V. Belle, and G. Lakemeyer. Concerning measures in a first-order logic with actions
and meta-beliefs. In 20th International Conference on Principles of Knowledge Representation and
Reasoning, 2023.

[63] Y. Liu, G. Lakemeyer, and H. J. Levesque. A logic of limited belief for reasoning with disjunctive
information. In KR, pages 587–597, 2004.

[64] Y. Liu and H. J. Levesque. Tractable reasoning in first-order knowledge bases with disjunctive informa-
tion. In Proc. AAAI, pages 639–644, 2005.

[65] Y. Luo, J. Peng, and J. Ma. When causal inference meets deep learning. Nature Machine Intelligence,
2(8):426–427, 2020.

[66] R. Manhaeve, S. Dumancic, A. Kimmig, T. Demeester, and L. De Raedt. Deepproblog: Neural proba-
bilistic logic programming. Advances in Neural Information Processing Systems, 31, 2018.

[67] G. Marcus. Am i human? Scientific American, 316(3):58–63, 2017.
[68] J. McCarthy. Programs with common sense. In Proceedings of the Symposium on the Mechanization of

Thought Processes, National Physiology Lab, Teddington, England, 1958.
[69] J. McCarthy and P. J. Hayes. Some philosophical problems from the standpoint of artificial intelligence.

In Machine Intelligence, pages 463–502, 1969.
[70] B. Milch, B. Marthi, S. J. Russell, D. Sontag, D. L. Ong, and A. Kolobov. BLOG: Probabilistic models

with unknown objects. In Proc. IJCAI, pages 1352–1359, 2005.
[71] P. P. Mitra. The circuit architecture of whole brains at the mesoscopic scale. Neuron, 83(6):1273–1283,

2014.
[72] L. Morgenstern and S. A. McIlraith. John McCarthy’s legacy. Artificial Intelligence, 175(1):1 – 24,

2011.
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